login
Numbers obtained from cyclically permuting the base-7 digits of 13143449029 and converting back to decimal.
1

%I #8 Sep 28 2019 07:45:56

%S 2732225029,4344971347,5284288003,6552690421,7329791221,8845405603,

%T 8956420003,9307441621,9784676947,9786942547,13127589829,13143449029

%N Numbers obtained from cyclically permuting the base-7 digits of 13143449029 and converting back to decimal.

%C All terms are prime, therefore 13143449029 is a base-7 circular prime, see A293660.

%C 13143449029 is remarkable in that it has 12 digits in base 7 and may be the largest known nonrepunit circular prime in that base.

%e Base-7 expansion | Decimal value

%e ---------------------------------

%e 643464321244 | 13143449029

%e 434643212446 | 8956420003

%e 346432124464 | 7329791221

%e 464321244643 | 9784676947

%e 643212446434 | 13127589829

%e 432124464346 | 8845405603

%e 321244643464 | 6552690421

%e 212446434643 | 4344971347

%e 124464346432 | 2732225029

%e 244643464321 | 5284288003

%e 446434643212 | 9307441621

%e 464346432124 | 9786942547

%o (PARI) rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v

%o decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])

%o my(d=digits(13143449029, 7), e=d, v=[]); while(1, v=concat(v, [decimal(d, 7)]); d=rot(d); if(d==e, return(vecsort(v))))

%Y Cf. A293142, A293660, A327835.

%K nonn,base,easy,fini,full

%O 1,1

%A _Felix Fröhlich_, Sep 26 2019