Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Sep 23 2019 07:32:17
%S 1,1,1,1,2,3,2,3,5,6,6,7,10,12,12,15,20,23,24,28,36,42,44,51,64,73,78,
%T 89,108,123,132,150,179,202,218,246,288,324,350,393,456,509,552,616,
%U 706,786,852,948,1078,1195,1297,1436,1620,1791,1942,2145,2406,2650,2874,3163,3528
%N Expansion of Product_{k>=1} (1 + x^k/(1 + x^(2*k))).
%H Vaclav Kotesovec, <a href="/A327717/b327717.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) ~ 5^(1/4) * exp(sqrt(5*n/2)*Pi/3) / (2^(5/4)*3*n^(3/4)). - _Vaclav Kotesovec_, Sep 23 2019
%t nmax = 100; CoefficientList[Series[Product[1 + x^k/(1 + x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 23 2019 *)
%t nmax = 100; CoefficientList[Series[Product[(1 + x^k + x^(2*k)) * (1 - x^(4*k - 2)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 23 2019 *)
%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1+x^k/(1+x^(2*k))))
%Y Convolution inverse of A307757.
%Y Cf. A000726, A327716, A327718, A327719, A327720.
%K nonn
%O 0,5
%A _Seiichi Manyama_, Sep 23 2019