The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327714 Exceptional class of numbers n such that p(7*n + 5) == 0 mod 49, where p() = A000041(). 7

%I

%S 73,98,99,112,141,154,171,197,225,245,266,276,283,288,290,301,309,316,

%T 322,323,330,357,385,386,406,414,444,455,463,465,483,484,491,498,512,

%U 525,539,554,575,596,602,626,654,665,679

%N Exceptional class of numbers n such that p(7*n + 5) == 0 mod 49, where p() = A000041().

%C The unexceptional class consists of the numbers n == (2, 4, 5, or 6) mod 7. Watson (1938, p. 125) proved that such numbers n satisfy p(7*n + 5) == 0 mod 49.

%H Watson, G. N., <a href="http://www.digizeitschriften.de/dms/resolveppn/?PID=GDZPPN002174499">Ramanujans Vermutung über Zerfällungsanzahlen</a>, J. Reine Angew. Math. (Crelle) 179 (1938), 97-128; see pp. 124-127.

%e p(7*73 + 5) = p(516) = 49 * 113094142490063549717. This example is given by Watson (1938, p. 127). On the same page, he also says that p(105*7 + 5) = p(740) == 0 mod 49 (even though 105 == 0 mod 7), but that is wrong.

%p isA327714 := n -> 0 = modp(combinat:-numbpart(7*n + 5), 49) and 2 <> modp(n, 7) and 4 <> modp(n, 7) and 5 <> n mod 7 and 6 <> n mod 7;

%p select(isA327714, [\$ (1 .. 700)]);

%Y Cf. A000041, A110375, A160524, A327713.

%K nonn

%O 1,1

%A _Petros Hadjicostas_, Sep 23 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 09:44 EDT 2020. Contains 337268 sequences. (Running on oeis4.)