login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of divisors of n that have an odd number of distinct prime factors.
2

%I #8 Sep 27 2019 15:19:44

%S 0,2,3,6,5,5,7,14,12,7,11,9,13,9,8,30,17,14,19,11,10,13,23,17,30,15,

%T 39,13,29,40,31,62,14,19,12,18,37,21,16,19,41,54,43,17,17,25,47,33,56,

%U 32,20,19,53,41,16,21,22,31,59,104,61,33,19,126,18,82,67,23,26,84

%N Sum of divisors of n that have an odd number of distinct prime factors.

%H Alois P. Heinz, <a href="/A327669/b327669.txt">Table of n, a(n) for n = 1..20000</a>

%F G.f.: Sum_{k>=1} A030230(k) * x^A030230(k) / (1 - x^A030230(k)).

%F L.g.f.: log(B(x)) = Sum_{n>=1} a(n) * x^n / n, where B(x) = g.f. of A285799.

%F a(n) = Sum_{d|n} d * A092248(d).

%F a(n) = A000203(n) - A327670(n).

%F a(p) = p, where p is prime.

%p with(numtheory):

%p a:= n-> add(`if`(nops(factorset(d))::odd, d, 0), d=divisors(n)):

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Sep 21 2019

%t a[n_] := DivisorSum[n, # &, OddQ[PrimeNu[#]] &]; Table[a[n], {n, 1, 70}]

%Y Cf. A000203, A030230, A049060, A092248, A285799, A318677, A327670.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Sep 21 2019