

A327661


Least number k > n  2 such that k*n^k  1 is prime.


2



3, 2, 2, 3, 8, 19, 18, 7, 10, 11, 252, 43, 563528, 98, 14, 167, 18, 28, 410, 44, 200, 140, 29028, 124, 68, 79, 2420, 47, 26850, 63, 2454, 140, 42, 164, 38, 62, 740, 67, 448, 51, 84, 135, 404882, 43, 84, 140, 140, 115, 710, 2390, 46640, 261, 60, 72, 2064, 414
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Different version of A240235. Some authors, like Caldwell (link), require that k + 2 > n before they use the term generalized Woodall for a prime of form k*n^k  1.


LINKS

Jeppe Stig Nielsen, Table of n, a(n) for n = 1..144
Chris K. Caldwell, The Top Twenty: Generalized Woodall.


EXAMPLE

To find a(11), consider numbers k*11^k  1 where k > 9. The first time it is prime, is for k = 252, so a(11) = 252.


PROG

(PARI) for(b=1, +oo, for(k=b1, +oo, if(ispseudoprime(k*b^k1), print1(k, ", "); next(2))))


CROSSREFS

Cf. A240235, A327660, A240234.
Sequence in context: A059942 A032450 A046460 * A117643 A141862 A237612
Adjacent sequences: A327658 A327659 A327660 * A327662 A327663 A327664


KEYWORD

nonn,hard


AUTHOR

Jeppe Stig Nielsen, Sep 21 2019


STATUS

approved



