login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of parts in all proper many times partitions of n.
4

%I #15 May 04 2020 12:35:36

%S 0,1,3,9,45,185,1277,7469,67993,514841,5414197,52609653,679432169,

%T 7704502013,111283754969,1515535050805,25257251330321,385282195339393,

%U 7088110874426409,123325149268482781,2520808658222616653,48623257343586890769,1078165538033926164281

%N Number of parts in all proper many times partitions of n.

%C In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.

%H Alois P. Heinz, <a href="/A327648/b327648.txt">Table of n, a(n) for n = 0..300</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%e a(3) = 9 = 1 + 2 + 3 + 3, counting the (final) parts in: 3, 3->21, 3->111, 3->21->111.

%e a(4) = 45: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.

%p b:= proc(n, i, k) option remember; `if`(n=0, [1, 0],

%p `if`(k=0, [1, 1], `if`(i<2, 0, b(n, i-1, k))+

%p (h-> (f-> f +[0, f[1]*h[2]/h[1]])(h[1]*

%p b(n-i, min(n-i, i), k)))(b(i$2, k-1))))

%p end:

%p a:= n-> add(add(b(n$2, i)[2]*(-1)^(k-i)*

%p binomial(k, i), i=0..k), k=0..n-1):

%p seq(a(n), n=0..25);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[k == 0, {1, 1}, If[i < 2, 0, b[n, i - 1, k]] + Function[h, Function[f, f + {0, f[[1]] h[[2]]/ h[[1]]}][h[[1]] b[n - i, Min[n - i, i], k]]][b[i, i, k - 1]]]];

%t a[n_] := Sum[b[n, n, i][[2]] (-1)^(k - i) Binomial[k, i], {k, 0, n - 1}, {i, 0, k}];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, May 01 2020, after Maple *)

%Y Row sums of A327631.

%Y Cf. A327644, A327647.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 20 2019