login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of steps in all proper many times partitions of n.
2

%I #17 Dec 18 2020 04:01:16

%S 0,0,1,4,25,108,788,4740,44445,339632,3625136,35508536,462626736,

%T 5273725108,76634997096,1047347436984,17542238923677,268193251446228,

%U 4949536256552648,86303019303031400,1768833677916545596,34165810747993948664,759192269597947084836

%N Total number of steps in all proper many times partitions of n.

%C In each step at least one part is replaced by the partition of itself into smaller parts. The parts are not resorted.

%H Alois P. Heinz, <a href="/A327646/b327646.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = Sum_{k=1..n-1} k * A327639(n,k).

%e a(3) = 4 = 0+1+1+2, counting steps "->" in: 3, 3->21, 3->111, 3->21->111.

%e a(4) = 25: 4, 4->31, 4->22, 4->211, 4->1111, 4->31->211, 4->31->1111, 4->22->112, 4->22->211, 4->22->1111, 4->211->1111, 4->31->211->1111, 4->22->112->1111, 4->22->211->1111.

%p b:= proc(n, i, k) option remember; `if`(n=0 or k=0, 1, `if`(i>1,

%p b(n, i-1, k), 0) +b(i$2, k-1)*b(n-i, min(n-i, i), k))

%p end:

%p a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)*

%p binomial(k, i), i=0..k), k=1..n-1):

%p seq(a(n), n=0..23);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0, 1, If[i > 1, b[n, i - 1, k], 0] + b[i, i, k - 1] b[n - i, Min[n - i, i], k]];

%t a[n_] := Sum[k Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}], {k, 1, n - 1}];

%t a /@ Range[0, 23] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ *)

%Y Cf. A327639.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Sep 20 2019