Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 19 2019 19:56:18
%S 1,2,4,4,5,9,7,8,12,11,11,18,13,14,21,16,17,27,19,22,29,22,23,36,25,
%T 26,36,29,29,50,31,32,44,34,35,55,37,38,52,44,41,65,43,44,64,46,47,72,
%U 49,55,68,52,53,81,56,58,76,58,59,100,61,62,87,64,65,100,67,68,92,77
%N Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 - x^(k*(k + 1)/2))^2.
%C Sum of divisors d of n such that n/d is triangular number.
%F a(n) = Sum_{d|n} A010054(n/d) * d.
%t nmax = 70; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 - x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%t a[n_] := DivisorSum[n, # &, IntegerQ[Sqrt[8 n/# + 1]] &]; Table[a[n], {n, 1, 70}]
%o (PARI) a(n)={sumdiv(n, d, if(ispolygonal(d,3), n/d))} \\ _Andrew Howroyd_, Sep 19 2019
%Y Cf. A000217, A006463, A007862, A010054, A076752, A112886 (fixed points), A185027.
%K nonn
%O 1,2
%A _Ilya Gutkovskiy_, Sep 19 2019