Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 15 2020 17:39:55
%S 0,1,8,69,712,8705,123456,1994293,36163184,727518177,16081980760,
%T 387499155461,10108673620728,283851555270049,8536572699232592,
%U 273759055527114165,9325469762472018016,336282091434597013313,12797935594025234906664,512609204063389138693957
%N Expansion of e.g.f. exp(x)*(1-x)*x/(1-2*x)^2.
%H Alois P. Heinz, <a href="/A327606/b327606.txt">Table of n, a(n) for n = 0..402</a>
%F E.g.f: exp(x)*(1-x)*x/(1-2*x)^2.
%F a(n) = Sum_{k=1..n} k * A326659(n,k).
%F a(n) ~ n! * exp(1/2) * n * 2^(n-2). - _Vaclav Kotesovec_, Sep 19 2019
%p a:= n-> n!*coeff(series(exp(x)*(1-x)*x/(1-2*x)^2, x, n+1), x, n):
%p seq(a(n), n=0..23);
%p # second Maple program:
%p a:= proc(n) option remember; `if`(n<3, n^3,
%p 2*(n+2)*a(n-1)-(4*n-1)*a(n-2)+2*(n-2)*a(n-3))
%p end:
%p seq(a(n), n=0..23);
%t With[{nn=20},CoefficientList[Series[Exp[x](1-x)(x/(1-2x)^2),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Mar 15 2020 *)
%Y Cf. A308876, A326659.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 18 2019