The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327584 Number T(n,k) of colored compositions of n using all colors of a k-set such that all parts have different color patterns and the patterns for parts i have i distinct colors in increasing order; triangle T(n,k), k>=0, k<=n<=k*2^(k-1), read by columns. 5
 1, 1, 3, 4, 6, 13, 48, 150, 300, 666, 936, 1824, 2520, 2160, 5040, 75, 536, 2820, 11144, 41346, 131304, 420084, 1191552, 3427008, 9207456, 23466720, 61522560, 141553560, 345346560, 777152160, 1635096960, 3700806480, 6998261760, 14211912960, 27442437120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS T(n,k) is defined for all n>=0 and k>=0.  The triangle displays only positive terms.  All other terms are zero. LINKS Alois P. Heinz, Columns k = 0..7, flattened EXAMPLE T(3,2) = 4: 2ab1a, 2ab1b, 1a2ab, 1b2ab. T(3,3) = 13: 3abc, 2ab1c, 2ac1b, 2bc1a, 1a2bc, 1b2ac, 1c2ab, 1a1b1c, 1a1c1b, 1b1a1c, 1b1c1a, 1c1a1b, 1c1b1a. T(4,2) = 6: 2ab1a1b, 1a2ab1b, 1a1b2ab, 2ab1b1a, 1b2ab1a, 1b1a2ab. Triangle T(n,k) begins:   1;      1;         3;         4,  13;         6,  48,    75;            150,   536,    541;            300,  2820,   6320,   4683;            666, 11144,  50150,  81012,   47293;            936, 41346, 308080, 903210, 1134952, 545835;            ... MAPLE C:= binomial: g:= proc(n) option remember; n*2^(n-1) end: h:= proc(n) option remember; local k; for k from       `if`(n=0, 0, h(n-1)) do if g(k)>=n then return k fi od     end: b:= proc(n, i, k, p) option remember; `if`(n=0, p!,       `if`(i<1 or k add(b(n\$2, i, 0)*(-1)^(k-i)*C(k, i), i=0..k): seq(seq(T(n, k), n=k..k*2^(k-1)), k=0..5); MATHEMATICA c = Binomial; g[n_] := g[n] = n*2^(n - 1); h[n_] := h[n] = Module[{k}, For[k = If[n == 0, 0,      h[n - 1]], True, k++, If[g[k] >= n, Return[k]]]]; b[n_, i_, k_, p_] := b[n, i, k, p] = If[n == 0, p!,      If[i < 1 || k < h[n], 0, Sum[b[n - i*j, Min[n - i*j, i - 1],      k, p + j]*c[c[k, i], j], {j, 0, n/i}]]]; T[n_, k_] := Sum[b[n, n, i, 0]*(-1)^(k - i)*c[k, i], {i, 0, k}]; Table[Table[T[n, k], {n, k, k*2^(k - 1)}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Feb 22 2021, after Alois P. Heinz *) CROSSREFS Main diagonal gives A000670. Row sums give A321587. Column sums give A327585. Cf. A001787, A326962, A327583 (this triangle read by rows). Sequence in context: A180647 A318345 A143100 * A180859 A271618 A137820 Adjacent sequences:  A327581 A327582 A327583 * A327585 A327586 A327587 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, Sep 17 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 03:15 EST 2022. Contains 350504 sequences. (Running on oeis4.)