login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327542
A linear divisibility sequence of order 8.
1
1, 2, 16, 36, 171, 512, 2087, 6984, 26512, 92682, 341573, 1216512, 4429309, 15898766, 57595536, 207410832, 749793263, 2703799808, 9765692771, 35235657396, 127218945296, 459128080534, 1657436539337, 5982212358144, 21594204190521
OFFSET
1,2
COMMENTS
Let f(x) = 1 + P*x + Q*x^2 + R*x^3 + x^4 be a monic quartic polynomial with integer coefficients. Let g(x) = x^4*f(1/x) = 1 + R*x + Q*x^2 + P*x^3 + x^4 be the reciprocal polynomial of f(x). Then the rational function x*d/dx( log(f(x)/g(-x)) ) is the generating function for a divisibility sequence satisfying a linear recurrence equation of order 8. Here we take f(x) = 1 + x - 2*x^2 + 3*x^3 + x^4 (and normalize the resulting divisibility sequence by removing a common factor of 4 from the terms of the sequence).
Roettger et al. constructed a 5-parameter family U_n(P1,P2,P3,P4,Q) of linear divisibility sequences of order 8. This sequence is a particular case of their result with parameters P1 = 2, P2 = -3, P3 = 0, P4 = -16 and Q = -1.
There are corresponding results for certain cubic polynomials - see A001945. See also A327541.
LINKS
E. L. Roettger, H. C. Williams, R. K. Guy, Some extensions of the Lucas functions, Number Theory and Related Fields: In Memory of Alf van der Poorten, Series: Springer Proceedings in Mathematics & Statistics 43, 271-311 (2013), chapter 5.
FORMULA
a(2*n) = (1/4) * Sum_{i = 1..4} (alpha(i)^(2*n) - 1/alpha(i)^(2*n)), where alpha(i), 1 <= i <= 4, are the zeros of the quartic polynomial 1 + x - 2*x^2 + 3*x^3 + x^4.
a(2*n+1) = (-1/4) * Sum_{i = 1..4} (alpha(i)^(2*n+1) + 1/alpha(i)^(2*n+1)).
a(2*n)^2 = (-1/16) * Product_{i = 1..6} (1 - beta(i)^(2*n)), where beta(i), 1 <= i <= 6, are the zeros of the sextic polynomial x^6 + 2*x^5 + 2*x^4 - 14*x^3 + 2*x^2 + 2*x + 1.
a(2*n+1)^2 = (1/16) * Product_{i = 1..6} (1 + beta(i)^(2*n+1)).
a(n) = 2*a(n-1) + 7*a(n-2) - 6*a(n-3) + 4*a(n-4) + 6*a(n-5) + 7*a(n-6) - 2*a(n-7) - a(n-8).
O.g.f.: x*(1 + 5*x^2 - 4*x^3 - 5*x^4 - x^6)/((1 + x - 2*x^2 + 3*x^3 + x^4)*(1 - 3*x - 2*x^2 - x^3 + x^4)).
MATHEMATICA
a[n_] := With[{m = 1 - 2 Mod[n, 2]}, (m/4)(x^n - m/x^n) /. {Roots[1 + x - 2x^2 + 3x^3 + x^4 == 0, x] // ToRules} // Total // Round];
a /@ Range[25] (* Jean-François Alcover, Nov 11 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 23 2019
STATUS
approved