Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 02 2022 17:47:55
%S 1,1,1,1,1,2,1,1,1,2,1,1,1,2,3,1,1,1,1,1,3,2,1,1,1,2,1,1,1,6,1,1,3,2,
%T 5,2,1,2,3,1,1,6,1,1,1,2,1,1,1,1,3,1,1,1,5,1,3,2,1,3,1,2,1,1,5,6,1,1,
%U 3,10,1,1,1,2,1,1,7,6,1,1,1,2,1,3,5,2,3,1,1,2,7,1,3,2,5,1,1,1,1,2,1,6,1,1,15
%N Quotient of n over the maximum divisor of n whose prime multiplicities are distinct.
%C A number's prime multiplicities are also called its (unsorted) prime signature.
%H Antti Karttunen, <a href="/A327499/b327499.txt">Table of n, a(n) for n = 1..65537</a>
%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vSX9dPMGJhxB8rOknCGvOs6PiyhupdWNpqLsnphdgU6MEVqFBnWugAXidDhwHeKqZe_YnUqYeGOXsOk/pub">Sequences counting and encoding certain classes of multisets</a>
%F a(n) = n/A327498(n).
%e The maximum such divisor of 60 is 20, so a(60) = 3.
%t Table[n/Max[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]],{n,100}]
%o (PARI)
%o A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2]))));
%o A327499(n) = fordiv(n,d,if(A351564(n/d), return(d))); \\ _Antti Karttunen_, Apr 02 2022
%Y See link for additional cross-references.
%Y Cf. A000005, A098859, A124010, A130091, A255231, A327498, A327500, A351564.
%K nonn
%O 1,6
%A _Gus Wiseman_, Sep 16 2019
%E Data section extended up to 105 terms by _Antti Karttunen_, Apr 02 2022