%I #5 Sep 13 2019 17:04:29
%S 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,43,47,49,53,
%T 59,61,64,67,71,73,79,81,83,84,89,90,97,101,103,105,107,109,110,113,
%U 121,125,127,128,131,137,139,149,151,157,163,167,169,173,179,181
%N Heinz numbers of integer partitions whose mean A326567/A326568 is a part.
%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e The sequence of terms together with their prime indices begins:
%e 2: {1}
%e 3: {2}
%e 4: {1,1}
%e 5: {3}
%e 7: {4}
%e 8: {1,1,1}
%e 9: {2,2}
%e 11: {5}
%e 13: {6}
%e 16: {1,1,1,1}
%e 17: {7}
%e 19: {8}
%e 23: {9}
%e 25: {3,3}
%e 27: {2,2,2}
%e 29: {10}
%e 30: {1,2,3}
%e 31: {11}
%e 32: {1,1,1,1,1}
%e 37: {12}
%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t Select[Range[100],MemberQ[primeMS[#],Mean[primeMS[#]]]&]
%Y A subsequence of A316413.
%Y Complement of A327476.
%Y The enumeration of these partitions by sum is given by A237984.
%Y Subsets whose mean is a part are A065795.
%Y Numbers whose binary indices include their mean are A327478.
%Y Cf. A000016, A056239, A067538, A112798, A240850, A325706, A326567/A326568.
%K nonn
%O 1,1
%A _Gus Wiseman_, Sep 13 2019