login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327444 a(n) is the maximum absolute value of the coefficients of the quotient polynomial R_(prime(n)#)/Product_{j=1..n} R_(prime(j)), where prime(n)# is the n-th primorial number A002110(n) and R_k = (x^k - 1)/(x - 1). 0
1, 1, 2, 4, 7, 20, 34, 93 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The values of the first few quotients, when x=10, are in A323060. (A file therein enumerates the coefficients of the fifth quotient.)
Conjecture: a(n) = exp((6n - 13 + (-1)^n)/8), approximately.
LINKS
EXAMPLE
R_(510510)/[R_(2)*R_(3)*R_(5)*R_(7)*R_(11)*R_(13)*R_(17)] = 1 - 6x + 16x^2 - 25x^3 + ... - 34x^11313 + ... + x^510458 (and no other coefficient exceeds 34 in absolute value), so a(7) = 34.
PROG
(PARI) R(k) = (x^k - 1)/(x - 1);
a(n) = {my(v = Vec(R(prod(k=1, n, prime(k)))/prod(k=1, n, R(prime(k))))); vecmax(apply(x->abs(x), v)); } \\ Michel Marcus, Sep 16 2019
CROSSREFS
Sequence in context: A225435 A243049 A247234 * A291403 A101805 A145777
KEYWORD
nonn,more
AUTHOR
Patrick A. Thomas, Sep 16 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 17:56 EST 2023. Contains 367713 sequences. (Running on oeis4.)