The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327444 a(n) is the maximum absolute value of the coefficients of the quotient polynomial R_(prime(n)#)/Product_{j=1..n} R_(prime(j)), where prime(n)# is the n-th primorial number A002110(n) and R_k = (x^k - 1)/(x - 1). 0
 1, 1, 2, 4, 7, 20, 34, 93 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The values of the first few quotients, when x=10, are in A323060. (A file therein enumerates the coefficients of the fifth quotient.) Conjecture: a(n) = exp((6n - 13 + (-1)^n)/8), approximately. LINKS EXAMPLE R_(510510)/[R_(2)*R_(3)*R_(5)*R_(7)*R_(11)*R_(13)*R_(17)] = 1 - 6x + 16x^2 - 25x^3 + ... - 34x^11313 + ... + x^510458 (and no other coefficient exceeds 34 in absolute value), so a(7) = 34. PROG (PARI) R(k) = (x^k - 1)/(x - 1); a(n) = {my(v = Vec(R(prod(k=1, n, prime(k)))/prod(k=1, n, R(prime(k))))); vecmax(apply(x->abs(x), v)); } \\ Michel Marcus, Sep 16 2019 CROSSREFS Cf. A002110, A323060. Sequence in context: A225435 A243049 A247234 * A291403 A101805 A145777 Adjacent sequences:  A327441 A327442 A327443 * A327445 A327446 A327447 KEYWORD nonn,more AUTHOR Patrick A. Thomas, Sep 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 14:37 EDT 2020. Contains 333107 sequences. (Running on oeis4.)