

A327444


a(n) is the maximum absolute value of the coefficients of the quotient polynomial R_(prime(n)#)/Product_{j=1..n} R_(prime(j)), where prime(n)# is the nth primorial number A002110(n) and R_k = (x^k  1)/(x  1).


0




OFFSET

1,3


COMMENTS

The values of the first few quotients, when x=10, are in A323060. (A file therein enumerates the coefficients of the fifth quotient.)
Conjecture: a(n) = exp((6n  13 + (1)^n)/8), approximately.


LINKS



EXAMPLE

R_(510510)/[R_(2)*R_(3)*R_(5)*R_(7)*R_(11)*R_(13)*R_(17)] = 1  6x + 16x^2  25x^3 + ...  34x^11313 + ... + x^510458 (and no other coefficient exceeds 34 in absolute value), so a(7) = 34.


PROG

(PARI) R(k) = (x^k  1)/(x  1);
a(n) = {my(v = Vec(R(prod(k=1, n, prime(k)))/prod(k=1, n, R(prime(k))))); vecmax(apply(x>abs(x), v)); } \\ Michel Marcus, Sep 16 2019


CROSSREFS



KEYWORD

nonn,more


AUTHOR



STATUS

approved



