Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Dec 17 2024 22:54:15
%S 1,3,2,1,3,2,5,4,9,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,3,
%T 2,5,4,9,13,12,11,10,9,8,7,6,5,4,3,2,1,3,2,5,4,7,6,9,8,11,23,22,21,20,
%U 19,18,17,16,15,14,13,12,11
%N a(0)=1. If a(n-1) and n are relatively prime and a(n-1)!=1, a(n) = a(n-1) - 1. Otherwise (i.e., if a(n-1) and n share a common factor or a(n-1)=1), a(n) = a(n-1) + gcd(a(n-1),n) + 1.
%C Graphically at large scales this sequence is vaguely self-similar, though in certain sections it acts in a rough manner, in particular in regions surrounding apparent cusps. See the program for a graph to zoom in on these sections.
%C See Python program for zoomable graph.
%H Nathaniel J. Strout, <a href="/A327439/b327439.txt">Table of n, a(n) for n = 0..116000</a>
%t a[0] = 1; a[n_] := a[n] = If[a[n - 1] != 1 && CoprimeQ[n, a[n - 1]], a[n - 1] - 1, a[n - 1] + GCD[a[n - 1], n] + 1]; Array[a, 101, 0] (* _Amiram Eldar_, Feb 24 2020 *)
%t nxt[{n_,a_}]:={n+1,If[CoprimeQ[n+1,a]&&a!=1,a-1,a+GCD[a,n+1]+1]}; NestList[nxt,{0,1},70][[;;,2]] (* _Harvey P. Dale_, Jun 08 2024 *)
%o (Python)
%o import math
%o import matplotlib.pyplot as plt
%o num = 10000
%o x = []
%o y = []
%o # y is the main sequence
%o def sequence():
%o a = 1
%o y.append(a)
%o for i in range(num):
%o if (a != 1) and (math.gcd(a,i+1) == 1):
%o a -= 1
%o else:
%o a += math.gcd(a,i+1)+1
%o x.append(i)
%o y.append(a)
%o x.append(num)
%o sequence()
%o # code only regarding the plot.
%o plt.xlim(0,num)
%o plt.ylim(0,num)
%o plt.plot(x, y)
%o plt.xlabel('x - axis')
%o plt.ylabel('y - axis')
%o plt.title('Plot of Sequence')
%o plt.show()
%K nonn,look
%O 0,2
%A _Nathaniel J. Strout_, Feb 24 2020