%I #16 Nov 25 2019 01:06:22
%S 1,2,4,4,4,6,12,8,4,6,12,12,10,16,32,16,4,6,12,12,10,16,32,20,12,18,
%T 36,36,26,42,84,32,4,6,12,12,10,16,32,20,12,18,36,36,26,42,84,40,16,
%U 24,48,44,24,40,80,48,32,48,96,96,64,104,208,64,4,6,12,12,10,16,32,20,12,18,36,36,26,42,84,40
%N Number of elements added at n-th stage to the toothpick structure of A327332.
%C The word of this cellular automaton is "ab".
%C The structure of the irregular triangle is as shown below:
%C a,b;
%C a,b;
%C a,b,a,b;
%C a,b,a,b,a,b,a,b;
%C a,b,a,b,a,b,a,b,a,b,a,b,a,b,a,b;
%C ...
%C Row lengths are the terms of A011782 multiplied by 2, also the column 2 of A296612.
%C Columns "a" contain numbers of V-toothpicks. Columns "b" contain numbers of I-toothpicks. See the example.
%C For further information about the word of cellular automata see A296612.
%e Triangle begins:
%e 1,2;
%e 4,4;
%e 4,6,12,8;
%e 4,6,12,12,10,16,32,16;
%e 4,6,12,12,10,16,32,20,12,18,36,36,26,42,84,32;
%e 4,6,12,12,10,16,32,20,12,18,36,36,26,42,84,40,16,24,48,44,24,40,80,48,32,48,...
%e It appears that right border gives the even powers of 2.
%Y First differences of A327332.
%Y Column 1 gives A123932.
%Y Cf. A011782, A139250, A139251, A160120, A160121, A161206, A161207, A296612, A323641, A323642, A323649, A327331 (similar triangle).
%Y For other hybrid cellular automata, see A194271, A194701, A220501, A289841, A290221, A294021, A294963, A294981, A299771, A323647, A323651.
%K nonn,tabf
%O 1,2
%A _Omar E. Pol_, Sep 01 2019