Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Oct 22 2023 16:36:55
%S 2,8,16,30,42,66,82,112,138,174,198,254,282,330,378,440,476,554,594,
%T 678,742,814,862,982,1044,1128,1208,1320,1380,1524,1588,1714,1810,
%U 1918,2014,2196,2272,2392,2504,2684,2768,2960,3048,3216,3372,3516,3612,3860,3974,4160,4304,4500,4608,4848,4992
%N Twice the sum of all divisors of all positive integers <= n.
%C a(n) has a symmetric representation. Using two opposite quadrants, where in each quadrant there is the Dyck path related to partitions described in the n-th row of triangle A237593, a(n) is the total area (or the total number of cells) of the structure (see the example).
%C a(n) is also the total area of the horizontal faces in the stepped pyramid with n levels described in A245092 (that is the total area of the terraces plus the area of the base). - _Omar E. Pol_, Dec 15 2021
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the stepped pyramid (first 16 levels)</a>
%F a(n) = 2*A024916(n).
%F a(n) = A243980(n)/2.
%F a(n) = A006218(n) + A222548(n).
%F a(n) = A001105(n) - A067436(n).
%F lim_{n->infinity} a(n)/(n^2) = Pi^2/6 = zeta(2) (cf. A013661). - _Omar E. Pol_, Dec 16 2021
%e Illustration of a(8) = 112 using a symmetric structure constructed with the Dyck path related to partitions described in the 8th row of triangle A237593.
%e _ _ _ _ _
%e | |
%e | |_
%e | |_ _
%e | |
%e | 56 |
%e | |
%e | |
%e _ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _|
%e | |
%e | |
%e | |
%e | 56 |
%e |_ _ |
%e |_ |
%e | |
%e |_ _ _ _ _|
%t Accumulate[2*DivisorSigma[1,Range[60]]] (* _Harvey P. Dale_, Sep 25 2021 *)
%o (Python)
%o from sympy import divisor_sigma
%o from itertools import accumulate
%o def f(_, n): return _ + 2*divisor_sigma(n, 1)
%o def aupton(terms): return list(accumulate(range(terms+1), f))[1:]
%o print(aupton(55)) # _Michael S. Branicky_, Dec 16 2021
%o (PARI) a(n) = 2*sum(k=1, n, sigma(k)); \\ _Michel Marcus_, Dec 20 2021
%o (Python)
%o from math import isqrt
%o def A327329(n): return -(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # _Chai Wah Wu_, Oct 22 2023
%Y Partial sums of A074400.
%Y Cf. A001105, A006218, A013661, A024916, A067436, A222548, A236104, A237591, A237593, A243980, A245092, A262626.
%K nonn
%O 1,1
%A _Omar E. Pol_, Sep 25 2019