%I #15 Sep 30 2019 10:46:11
%S 1,3,8,10,12,17,19,21,23,28,30,32,37,39,41,48,50,52,57,59,61,66,68,70,
%T 72,77,79,81,86,88,90,92,97,99,101,106,108,110,112,117,119,121,126,
%U 128,130,137,139,141,146,148,150,157,159,161,166,168,170,175
%N Positions of 1's in {A327306(n) : n > 0}.
%C The positive integers are partitioned by A327307, A327308, and A327309.
%C Although a(n)/n->3, the sequence a(n)-3n appears to be unbounded.
%C Positive integers k such that A327306(k) = 1. - _Jianing Song_, Sep 30 2019
%H Clark Kimberling and Jianing Song, <a href="/A327308/b327308.txt">Table of n, a(n) for n = 1..10000</a>
%t r = Sqrt[6]; z = 300;
%t t = Table[Floor[3 n*r] - 3 Floor[n*r], {n, 1, z}] (* {A327306(n) : n > 0} *)
%t Flatten[Position[t, 0]] (* A327307 *)
%t Flatten[Position[t, 1]] (* A327308 *)
%t Flatten[Position[t, 2]] (* A327309 *)
%Y Cf. A327306, A327307, A327309.
%K nonn,easy
%O 1,2
%A _Clark Kimberling_, Sep 07 2019
%E Corrected by _Jianing Song_, Sep 30 2019