%I #25 Jan 12 2021 12:25:18
%S 3,4,9,10,19,18,26,28,32,32,46,43,52,54,60,60,95,77,87,90,94,97,137,
%T 117,111,115,131,123,207,147,160,163,201,169,216,173,185,195,242,205,
%U 331,229,242,252,277,261,411,294,292,290,322,299,438,331,304,331,356,339,659,375,379,404,461,412
%N Cardinalities of the minimal sets of base-n representations of the composite numbers.
%C Second column |M(S_b)| of Figure 4 on page 20 of the Bright, Devillers, Shallit article.
%H Curtis Bright, Raymond Devillers, and Jeffrey Shallit, <a href="https://cs.uwaterloo.ca/~cbright/reports/mepn.pdf">Minimal Elements for the Prime Numbers</a>, June 11, 2015.
%H Curtis Bright, <a href="https://github.com/curtisbright/mepn-data/tree/master/data/composites">Computed data for the MEPN project</a>, data for composites, GitHub, 2015.
%H Raymond Devillers, <a href="https://github.com/xayahrainie4793/minimal-primes-and-left-right-truncatable-primes">Minimal primes and left-right-truncatable primes</a>, GitHub repository, 2021.
%H Mersenneforum, <a href="https://mersenneforum.org/showthread.php?t=21819&page=10">Generalized minimal (probable) primes</a>, Jan 2021.
%e a(10) = 32 because there are 32 elements in the minimal set of composite-strings in base 10, given in A071070.
%Y Cf. A071070, A330048.
%K nonn
%O 2,1
%A _Hugo Pfoertner_, Nov 29 2019
%E a(31)-a(65) from _Hugo Pfoertner_ using data from Raymond Devillers, Jan 12 2021