login
For n >= 1, a(n) = b(n+1) - b(n) where b is A013947.
0

%I #22 Sep 19 2019 03:25:36

%S 3,1,2,3,3,1,2,1,3,2,1,2,3,1,2,1,2,3,3,1,2,3,2,1,2,1,3,3,1,2,3,3,1,2,

%T 1,2,3,2,1,3,3,1,2,3,3,1,2,1,3,2,1,2,3,3,1,2,1,2,3,1,2,1,3,2,1,2,1,3,

%U 3,1,2,3,2,1,3,3,2,1,2,1,3,3,1,2,3

%N For n >= 1, a(n) = b(n+1) - b(n) where b is A013947.

%C Stepwise answer to the stepwise question "How far ahead is the next 1 in the Kolakoski sequence, starting from A000002(1) = 1?" Sequence contains only 1s, 2s and 3s. Conjecture: Densities of 1s, 2s, and 3s -> 1/3 as n->infinity.

%F a(n) = A013947(n+1) - A013947(n); n >= 1.

%e n=1 -> a(1) = A013947(2) - A013947(1) = 4 - 1 = 3.

%Y Cf. A000002, A013947.

%K nonn

%O 1,1

%A _David James Sycamore_, Sep 14 2019