Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Sep 01 2019 08:40:09
%S 0,0,0,32,9552
%N Number of set-systems covering n vertices with spanning edge-connectivity 2.
%C A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.
%e The a(3) = 32 set-systems:
%e {12}{13}{23} {1}{12}{13}{23} {1}{2}{12}{13}{23} {1}{2}{3}{12}{13}{23}
%e {12}{13}{123} {2}{12}{13}{23} {1}{3}{12}{13}{23} {1}{2}{3}{12}{13}{123}
%e {12}{23}{123} {3}{12}{13}{23} {2}{3}{12}{13}{23} {1}{2}{3}{12}{23}{123}
%e {13}{23}{123} {1}{12}{13}{123} {1}{2}{12}{13}{123} {1}{2}{3}{13}{23}{123}
%e {1}{12}{23}{123} {1}{2}{12}{23}{123}
%e {1}{13}{23}{123} {1}{2}{13}{23}{123}
%e {2}{12}{13}{123} {1}{3}{12}{13}{123}
%e {2}{12}{23}{123} {1}{3}{12}{23}{123}
%e {2}{13}{23}{123} {1}{3}{13}{23}{123}
%e {3}{12}{13}{123} {2}{3}{12}{13}{123}
%e {3}{12}{23}{123} {2}{3}{12}{23}{123}
%e {3}{13}{23}{123} {2}{3}{13}{23}{123}
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
%t Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==2&]],{n,0,3}]
%Y The BII-numbers of these set-systems are A327108.
%Y Set-systems with spanning edge-connectivity 1 are A327145.
%Y The restriction to simple graphs is A327146.
%Y Cf. A003465, A323818, A327069, A327109, A327111, A327144.
%K nonn,more
%O 0,4
%A _Gus Wiseman_, Aug 27 2019