%I #17 May 20 2021 22:59:12
%S 1,0,0,0,0,1,0,3,0,1,3,28,9,0,1,40,490,212,25,0,1,745,15336,9600,1692,
%T 75,0,1
%N Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with cut-connectivity k.
%C We define the cut-connectivity of a graph to be the minimum number of vertices that must be removed (along with any incident edges) to obtain a disconnected or empty graph, with the exception that a graph with one vertex and no edges has cut-connectivity 1. Except for complete graphs, this is the same as vertex-connectivity.
%e Triangle begins:
%e 1
%e 0 0
%e 0 0 1
%e 0 3 0 1
%e 3 28 9 0 1
%e 40 490 212 25 0 1
%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
%t cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
%t Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
%Y After the first column, same as A327125.
%Y Column k = 0 is A327070.
%Y Column k = 1 is A327114.
%Y Row sums are A006129.
%Y Different from A327069.
%Y Row sums without the first column are A001187, if we assume A001187(0) = A001187(1) = 0.
%Y Row sums without the first two columns are A013922.
%Y Cf. A006125, A259862, A322389, A326786, A327114, A327127, A327198, A327237.
%K nonn,more,tabl
%O 0,8
%A _Gus Wiseman_, Aug 25 2019
%E a(21)-a(27) from _Robert Price_, May 20 2021