Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 May 06 2020 05:27:52
%S 0,1,5,24,129,752,4796,33117,246336,1961233,16626100,149376533,
%T 1416602126,14130107135,147781380186,1616110614723,18434515499407,
%U 218849548323400,2698686223271769,34504328470389166,456669361749612835,6247290917385938422,88216873775207493056
%N Total number of colors in all colored integer partitions of n using all colors of an initial color palette such that a color pattern for part i has i distinct colors in increasing order.
%H Alois P. Heinz, <a href="/A327118/b327118.txt">Table of n, a(n) for n = 0..230</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%F a(n) = Sum_{k=1..n} k * A327117(n,k).
%p C:= binomial:
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
%p b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i)+j-1, j), j=0..n/i)))
%p end:
%p a:= n-> add(k*add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
%p seq(a(n), n=0..25);
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, Min[n - i j, i-1], k] Binomial[Binomial[k, i]+j-1, j], {j, 0, n/i}]]];
%t a[n_] := Sum[k Sum[b[n, n, i](-1)^(k-i)Binomial[k, i], {i, 0, k}], {k, 0, n}];
%t a /@ Range[0, 25] (* _Jean-François Alcover_, May 06 2020, after Maple *)
%Y Cf. A327117.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Sep 13 2019