login
A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.
4

%I #20 Aug 13 2019 09:04:40

%S 1,1,6,3,9,26,10,117,68,100,35,2574,4500,517,365,126,70005,748616,

%T 199155,4163,1302,462,2082759,192426260,282846568,10499643,36180,4606,

%U 1716,65061234,59688349943,799156187475,141482705378,663488532,341733,16284

%N A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.

%F The columns for k = 0, 1, 2 are suppressed as they are identical 0.

%F A(0, k) = A000108(k) - A011782(k).

%F A(1, k) = A000142(k) - A000110(k).

%F A(2, k) = A002105(k) - A005046(k-1) for k >= 1.

%F A(3, k) = A018893(k) - A291973(k).

%F A(4, k) = A326999(k) - A291975(k).

%e Array starts:

%e n\k [ 3 4 5 6 7 ]

%e [0] 1, 6, 26, 100, 365, ... [A125107]

%e [1] 1, 9, 68, 517, 4163, ... [A048742]

%e [2] 3, 117, 4500, 199155, 10499643, ... [A326995]

%e [3] 10, 2574, 748616, 282846568, 141482705378, ... [A327002]

%e [4] 35, 70005, 192426260, 799156187475, 4961959681629275, ...

%e [5] 126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...

%e A001700,

%p ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);

%Y Cf. A327001, A309522, A125107, A048742, A001700, A291973, A326999, A326995, A327002.

%K nonn,tabl

%O 0,3

%A _Peter Luschny_, Aug 12 2019