login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Constant term in the expansion of (-1 + Product_{k=1..n} (1 + x_k + 1/x_k))^n.
4

%I #35 Oct 30 2019 08:17:02

%S 1,0,8,264,121200,332810400,7753173594200,1440193875113407680,

%T 2250630808138439243100640,29565964235758317208187044137600,

%U 3307988125501026209547184198622507128848,3165738749695300492286911657015518806826344524560

%N Constant term in the expansion of (-1 + Product_{k=1..n} (1 + x_k + 1/x_k))^n.

%C Also number of n-step closed walks (from origin to origin) in n-dimensional lattice, using steps (t_1,t_2, ... ,t_n) (t_k = -1, 1 or 0 for 1 <= k <= n) except for (0,0, ... ,0) (t_k = 0 for 1 <= k <= n).

%H Seiichi Manyama, <a href="/A326920/b326920.txt">Table of n, a(n) for n = 0..47</a>

%F a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^n.

%F a(n) ~ 3^(n^2 + n/2) / (exp(3/16) * 2^n * Pi^(n/2) * n^(n/2)). - _Vaclav Kotesovec_, Oct 30 2019

%t Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^n, {k, 0, n}], {n, 0, 12}] (* _Vaclav Kotesovec_, Oct 30 2019 *)

%o (PARI) {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^n)}

%Y Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m: A126869 (m=1), A094061 (m=2), A328874 (m=3), A328875 (m=4).

%K nonn

%O 0,3

%A _Seiichi Manyama_, Oct 29 2019