login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.
3

%I #61 Dec 17 2023 03:11:34

%S 1,1,8,7,4,1,0,4,1,1,7,2,3,7,2,5,9,4,8,7,8,4,6,2,5,2,9,7,9,4,9,3,6,3,

%T 0,2,9,9,9,2,3,3,4,6,8,6,1,6,5,0,3,5,7,5,7,5,1,5,2,0,2,3,8,5,8,5,8,4,

%U 5,8,8,9,0,9,3,4,0,7,1,5,7,5,4,8,2,0,8,9,9,9,9

%N Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.

%C Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).

%C If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.

%C L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.

%C If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).

%C In this sequence we have Chi = A175629 and s = 1.

%H Sergio A. Carrillo, <a href="https://arxiv.org/abs/2010.10290">Where did the examples of Abel's continuity theorem go?</a>, arXiv:2010.10290 [math.HO], 2020. See p. 11.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletL-Series.html">Dirichlet L-Series</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>.

%F Equals Pi/sqrt(7). This is related to the class number formula: if d<0 is the fundamental discriminant of an imaginary quadratic number field, Chi(k) = Kronecker(d,k), then L(1,Chi) = Sum_{k>=1} Kronecker(d,k)/k = 2*Pi*h(d)/(sqrt(|d|)*w(d)), where h(d) is the class number of K = Q[sqrt(d)], w(d) is the number of elements in K whose norms are 1 (w(d) = 6 if d = -3, 4 if d = -4 and 2 if d < -4). Here d = -7, h(d) = 1, w(d) = 2.

%F Equals (polylog(1,u) + polylog(1,u^2) - polylog(1,u^3) + polylog(1,u^4) - polylog(1,u^5) - polylog(1,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).

%F Equals (polygamma(0,1/7) + polygamma(0,2/7) - polygamma(0,3/7) + polygamma(0,4/7) - polygamma(0,5/7) - polygamma(0,6/7))/49.

%F Equals 1/Product_{p prime} (1 - Kronecker(-7,p)/p), where Kronecker(-7,p) = 0 if p = 7, 1 if p == 1, 2 or 4 (mod 7) or -1 if p == 3, 5 or 6 (mod 7). - _Amiram Eldar_, Dec 17 2023

%e 1 + 1/2 - 1/3 + 1/4 - 1/5 - 1/6 + 1/8 + 1/9 - 1/10 + 1/11 - 1/12 - 1/13 + ... = Pi/sqrt(7) = 1.1874104117...

%t RealDigits[Pi/Sqrt[7], 10, 102] // First

%o (PARI) default(realprecision, 100); Pi/sqrt(7)

%Y Cf. A175629.

%Y Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k, where d is a fundamental discriminant: A093954 (d=-8), this sequence (d=-7), A003881 (d=-4), A073010 (d=-3), A086466 (d=5), A196525 (d=8), A196530 (d=12).

%Y Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: this sequence (s=1), A103133 (s=2), A327135 (s=3).

%K nonn,cons

%O 1,3

%A _Jianing Song_, Nov 19 2019