login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.
3

%I #61 Dec 17 2023 03:11:34

%S 1,1,8,7,4,1,0,4,1,1,7,2,3,7,2,5,9,4,8,7,8,4,6,2,5,2,9,7,9,4,9,3,6,3,

%T 0,2,9,9,9,2,3,3,4,6,8,6,1,6,5,0,3,5,7,5,7,5,1,5,2,0,2,3,8,5,8,5,8,4,

%U 5,8,8,9,0,9,3,4,0,7,1,5,7,5,4,8,2,0,8,9,9,9,9

%N Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.

%C Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).

%C If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.

%C L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.

%C If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).

%C In this sequence we have Chi = A175629 and s = 1.

%H Sergio A. Carrillo, <a href="https://arxiv.org/abs/2010.10290">Where did the examples of Abel's continuity theorem go?</a>, arXiv:2010.10290 [math.HO], 2020. See p. 11.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ClassNumber.html">Class Number</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletL-Series.html">Dirichlet L-Series</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>.

%F Equals Pi/sqrt(7). This is related to the class number formula: if d<0 is the fundamental discriminant of an imaginary quadratic number field, Chi(k) = Kronecker(d,k), then L(1,Chi) = Sum_{k>=1} Kronecker(d,k)/k = 2*Pi*h(d)/(sqrt(|d|)*w(d)), where h(d) is the class number of K = Q[sqrt(d)], w(d) is the number of elements in K whose norms are 1 (w(d) = 6 if d = -3, 4 if d = -4 and 2 if d < -4). Here d = -7, h(d) = 1, w(d) = 2.

%F Equals (polylog(1,u) + polylog(1,u^2) - polylog(1,u^3) + polylog(1,u^4) - polylog(1,u^5) - polylog(1,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).

%F Equals (polygamma(0,1/7) + polygamma(0,2/7) - polygamma(0,3/7) + polygamma(0,4/7) - polygamma(0,5/7) - polygamma(0,6/7))/49.

%F Equals 1/Product_{p prime} (1 - Kronecker(-7,p)/p), where Kronecker(-7,p) = 0 if p = 7, 1 if p == 1, 2 or 4 (mod 7) or -1 if p == 3, 5 or 6 (mod 7). - _Amiram Eldar_, Dec 17 2023

%e 1 + 1/2 - 1/3 + 1/4 - 1/5 - 1/6 + 1/8 + 1/9 - 1/10 + 1/11 - 1/12 - 1/13 + ... = Pi/sqrt(7) = 1.1874104117...

%t RealDigits[Pi/Sqrt[7], 10, 102] // First

%o (PARI) default(realprecision, 100); Pi/sqrt(7)

%Y Cf. A175629.

%Y Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k, where d is a fundamental discriminant: A093954 (d=-8), this sequence (d=-7), A003881 (d=-4), A073010 (d=-3), A086466 (d=5), A196525 (d=8), A196530 (d=12).

%Y Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: this sequence (s=1), A103133 (s=2), A327135 (s=3).

%K nonn,cons

%O 1,3

%A _Jianing Song_, Nov 19 2019