login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Product_{k>=1} (1 + (exp(x)-1)^k/k) / (1 - (exp(x)-1)^k/k).
2

%I #8 Jul 31 2019 12:37:21

%S 1,2,8,48,364,3320,35464,433692,5962548,90931152,1522657264,

%T 27765229844,547487475484,11604952395816,263091290017560,

%U 6351255101776812,162643987129698628,4403250400372110656,125649232950852714496,3769013390615951560068,118555772298034094231724

%N E.g.f.: Product_{k>=1} (1 + (exp(x)-1)^k/k) / (1 - (exp(x)-1)^k/k).

%H Vaclav Kotesovec, <a href="/A326887/b326887.txt">Table of n, a(n) for n = 0..420</a>

%F a(n) = Sum_{k=0..n} A305199(k)*Stirling2(n,k).

%F a(n) ~ n * (n+1)! / (16 * exp(2*gamma) * log(2)^(n+3)), where gamma is the Euler-Mascheroni constant A001620.

%t nmax = 20; CoefficientList[Series[Product[(1+(Exp[x]-1)^k/k)/(1-(Exp[x]-1)^k/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

%Y Cf. A305199, A305986, A305987.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Jul 31 2019