login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of integer partitions of m >= 0 using divisors of m whose length also divides m.
11

%I #14 Aug 09 2019 12:35:51

%S 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,43,47,49,53,

%T 59,61,64,67,71,73,79,81,83,84,89,97,101,103,107,109,113,121,125,127,

%U 128,131,137,139,149,151,157,163,167,169,173,179,181,191,193,197

%N Heinz numbers of integer partitions of m >= 0 using divisors of m whose length also divides m.

%C First differs from A071139, A089352 and A086486 in lacking 60. First differs from A326837 in lacking 268.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%C The enumeration of these partitions by sum is given by A326842.

%H R. J. Mathar, <a href="/A326847/b326847.txt">Table of n, a(n) for n = 1..489</a>

%F Intersection of A326841 and A316413.

%e The sequence of terms together with their prime indices begins:

%e 2: {1}

%e 3: {2}

%e 4: {1,1}

%e 5: {3}

%e 7: {4}

%e 8: {1,1,1}

%e 9: {2,2}

%e 11: {5}

%e 13: {6}

%e 16: {1,1,1,1}

%e 17: {7}

%e 19: {8}

%e 23: {9}

%e 25: {3,3}

%e 27: {2,2,2}

%e 29: {10}

%e 30: {1,2,3}

%e 31: {11}

%e 32: {1,1,1,1,1}

%e 37: {12}

%p isA326847 := proc(n)

%p psigsu := A056239(n) ;

%p for ifs in ifactors(n)[2] do

%p p := op(1,ifs) ;

%p psig := numtheory[pi](p) ;

%p if modp(psigsu,psig) <> 0 then

%p return false;

%p end if;

%p end do:

%p psigle := numtheory[bigomega](n) ;

%p if modp(psigsu,psigle) = 0 then

%p true;

%p else

%p false;

%p end if;

%p end proc:

%p n := 1:

%p for i from 2 to 3000 do

%p if isA326847(i) then

%p printf("%d %d\n",n,i);

%p n := n+1 ;

%p end if;

%p end do: # _R. J. Mathar_, Aug 09 2019

%t Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Length[y]]&&And@@IntegerQ/@(Total[y]/y)]&]

%Y Intersection of A326841 and A316413.

%Y Cf. A001222, A018818, A056239, A067538, A112798, A316413, A326836, A326842.

%K nonn

%O 1,1

%A _Gus Wiseman_, Jul 26 2019