%I #11 Jan 31 2021 02:58:55
%S 1,1,2,2,3,2,5,2,5,3,5,2,22,2,5,11,16,2,36,2,46,22,5,2,209,3,5,42,130,
%T 2,434,2,217,77,5,52,1400,2,5,135,1749,2,1782,2,957,2151,5,2,8355,3,
%U 1859,385,2388,2,6726,2765,10641,627,5,2,68049,2,5,13424,17142
%N Number of integer partitions of n whose length and maximum both divide n.
%C The Heinz numbers of these partitions are given by A326837.
%H Fausto A. C. Cariboni, <a href="/A326843/b326843.txt">Table of n, a(n) for n = 0..180</a>
%e The a(1) = 1 through a(8) = 5 partitions:
%e (1) (2) (3) (4) (5) (6) (7) (8)
%e (11) (111) (22) (11111) (33) (1111111) (44)
%e (1111) (222) (2222)
%e (321) (4211)
%e (111111) (11111111)
%e The a(12) = 22 partitions:
%e (12)
%e (6,6)
%e (4,4,4)
%e (6,3,3)
%e (6,4,2)
%e (6,5,1)
%e (3,3,3,3)
%e (4,3,3,2)
%e (4,4,2,2)
%e (4,4,3,1)
%e (6,2,2,2)
%e (6,3,2,1)
%e (6,4,1,1)
%e (2,2,2,2,2,2)
%e (3,2,2,2,2,1)
%e (3,3,2,2,1,1)
%e (3,3,3,1,1,1)
%e (4,2,2,2,1,1)
%e (4,3,2,1,1,1)
%e (4,4,1,1,1,1)
%e (6,2,1,1,1,1)
%e (1,1,1,1,1,1,1,1,1,1,1,1)
%t Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]]],{n,0,30}]
%Y The strict case is A326851.
%Y The non-constant case is A326852.
%Y The case where all parts (not just the maximum) divide n is A326842.
%Y Cf. A018818, A047993, A067538, A326837, A326849.
%K nonn
%O 0,3
%A _Gus Wiseman_, Jul 26 2019