Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Apr 15 2023 03:37:45
%S 1,-1,-3,1,-30,5,-1,315,525,-7,1,-1260,18270,-2940,9,-1,3465,-496650,
%T -695310,10395,-11,1,-7722,4279275,-52144092,7702695,-28314,13,-1,
%U 15015,-22387365,2701093395,3472834365,-49252203,65065,-15,1,-26520,86786700,-40541436936,454101489270,-63707972328,225645420,-132600,17
%N Consider the e.g.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k+1) * y^(2*k) / (2*n+1)! and related functions B(x,y) and C(x,y), as defined in the Formula section. Sequence gives the triangular array of coefficients T(n,k) (n>=0, 0<=k<=n) of A(x,y).
%C The e.g.f. of this triangle is equivalent to the e.g.f. of triangle A326800, where T(n,k) = A326800(n,k) * binomial(2*n+1, 2*k).
%C The e.g.f. A(x,y) at y = x is described by A326794.
%H Paul D. Hanna, <a href="/A326797/b326797.txt">Table of n, a(n) for n = 0..1890</a>
%F The e.g.f. Ax = A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^(2*n-2*k+1)*y^(2*k)/(2*n+1)! and related functions Bx = B(x,y), Cx = C(x,y), Ay = A(y,x), By = B(y,x), and Cy = C(y,x) satisfy the following relations.
%F DEFINITION.
%F (1a) Ax = 0 + Integral Bx*Cy - Cx*By dx,
%F (1b) Bx = 1 + Integral Cx*Ay - Ax*Cy dx,
%F (1c) Cx = 0 + Integral Ax*By - Bx*Ay dx.
%F (2a) Ay = 0 + Integral By*Cx - Cy*Bx dy,
%F (2b) By = 0 + Integral Cy*Ax - Ay*Cx dy,
%F (2c) Cy = 1 + Integral Ay*Bx - By*Ax dy.
%F IDENTITIES.
%F (3a) Ax^2 + Bx^2 + Cx^2 = 1.
%F (3b) Ay^2 + By^2 + Cy^2 = 1.
%F (4a) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2 = 1.
%F (4b) (Ax*Ay + Bx*By + Cx*Cy)^2 + (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2 = 1.
%F (5a) Ax*(d/dx Ax) + Bx*(d/dx Bx) + Cx*(d/dx Cx) = 0.
%F (5b) Ay*(d/dy Ay) + By*(d/dy By) + Cy*(d/dy Cy) = 0.
%F (5c) Ax*(d/dy Ay) + Bx*(d/dy By) + Cx*(d/dy Cy) = 0.
%F (5d) Ay*(d/dx Ax) + By*(d/dx Bx) + Cy*(d/dx Cx) = 0.
%F (5e) Ax*(d/dy Ax) + Bx*(d/dy Bx) + Cx*(d/dy Cx) = 0.
%F (5f) Ay*(d/dx Ay) + By*(d/dx By) + Cy*(d/dx Cy) = 0.
%F RELATED FUNCTIONS.
%F (6a) SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
%F (6b) d/dx SS(x*y) = Ax*(d/dx Ay) + Bx*(d/dx By) + Cx*(d/dx Cy).
%F (6c) d/dy SS(x*y) = Ay*(d/dy Ax) + By*(d/dy Bx) + Cy*(d/dy Cx).
%F (7a) CC(x*y)^2 = (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2.
%F (7b) CC(x*y)^2 = (d/dx Ax)^2 + (d/dx Bx)^2 + (d/dx Cx)^2.
%F (7c) CC(x*y)^2 = (d/dy Ay)^2 + (d/dy By)^2 + (d/dy Cy)^2.
%F In the above, CC(x) and SS(x) are the e.g.f.s of A326551 and A326552 defined by
%F (8a) CC(x*y)^2 + SS(x*y)^2 = 1,
%F (8b) SS(x*y) = Integral CC(x*y) * (Integral CC(x*y) dy) dx,
%F (8c) CC(x*y) = 1 - Integral SS(x*y) * (Integral CC(x*y) dy) dx,
%F (8d) SS(x*y) = sin( Integral Integral CC(x*y) dx dy ),
%F (8e) CC(x*y) = cos( Integral Integral CC(x*y) dx dy ).
%F OTHER RELATIONS.
%F (9a) Ay = Ax*SS(x*y) - Bx*(d/dx Cx) + Cx*(d/dx Bx).
%F (9b) By = Bx*SS(x*y) - Cx*(d/dx Ax) + Ax*(d/dx Cx).
%F (9c) Cy = Cx*SS(x*y) - Ax*(d/dx Bx) + Bx*(d/dx Ax).
%F (9d) Ax = Ay*SS(x*y) - By*(d/dy Cy) + Cy*(d/dy By).
%F (9e) Bx = By*SS(x*y) - Cy*(d/dy Ay) + Ay*(d/dy Cy).
%F (9f) Cx = Cy*SS(x*y) - Ay*(d/dy By) + By*(d/dy Ay).
%F DERIVATIVES.
%F (10a) d/dx Ax = Bx*Cy - Cx*By.
%F (10b) d/dx Bx = Cx*Ay - Ax*Cy.
%F (10c) d/dx Cx = Ax*By - Bx*Ay.
%F (10d) d/dy Ay = By*Cx - Cy*Bx.
%F (10e) d/dy By = Cy*Ax - Ay*Cx.
%F (10f) d/dy Cy = Ay*Bx - By*Ax.
%F VECTOR FORM.
%F Set radial vectors Vx = [Ax,Bx,Cx] and Vy = [Ay,By,Cy], then we can write the above relations in compact form using cross (X) products and dot (*) products.
%F (1) Vx = [0,1,0] + Integral Vx X Vy dx.
%F (2) Vy = [0,0,1] + Integral Vy X Vx dy.
%F (3a) Vx * Vx = 1.
%F (3b) Vy * Vy = 1.
%F (4a) (Vx * Vy)^2 + (d/dx Vx) * (d/dx Vx) = 1.
%F (4b) (Vx * Vy)^2 + (d/dy Vy) * (d/dy Vy) = 1.
%F (5a) Vx * (d/dx Vx) = 0.
%F (5b) Vy * (d/dy Vy) = 0.
%F (5c) Vx * (d/dy Vy) = 0.
%F (5d) Vy * (d/dx Vx) = 0.
%F (5e) Vx * (d/dy Vx) = 0.
%F (5f) Vy * (d/dx Vy) = 0.
%F (6a) SS(x*y) = Vx * Vy.
%F (6b) d/dx SS(x*y) = Vx * (d/dx Vy).
%F (6c) d/dy SS(x*y) = Vy * (d/dy Vx).
%F (7) CC(x*y)^2 = (Vx X Vy) * (Vx X Vy) = 1 - (Vx * Vy)^2.
%F (9a-c) Vy = Vx*SS(x*y) - Vx X (d/dx Vx) because Vx X (Vx X Vy) = Vx*(Vx * Vy) - Vy.
%F (9d-f) Vx = Vy*SS(x*y) - Vy X (d/dy Vy) because Vy X (Vy X Vx) = Vy*(Vx * Vy) - Vx.
%F (10a-c) d/dx Vx = Vx X Vy.
%F (10d-f) d/dy Vy = Vy X Vx.
%e E.g.f.: A(x,y) = x + (-1*x^3 - 3*x*y^2)/3! + (1*x^5 - 30*x^3*y^2 + 5*x*y^4)/5! + (-1*x^7 + 315*x^5*y^2 + 525*x^3*y^4 - 7*x*y^6)/7! + (1*x^9 - 1260*x^7*y^2 + 18270*x^5*y^4 - 2940*x^3*y^6 + 9*x*y^8)/9! + (-1*x^11 + 3465*x^9*y^2 - 496650*x^7*y^4 - 695310*x^5*y^6 + 10395*x^3*y^8 - 11*x*y^10)/11! + (1*x^13 - 7722*x^11*y^2 + 4279275*x^9*y^4 - 52144092*x^7*y^6 + 7702695*x^5*y^8 - 28314*x^3*y^10 + 13*x*y^12)/13! + (-1*x^15 + 15015*x^13*y^2 - 22387365*x^11*y^4 + 2701093395*x^9*y^6 + 3472834365*x^7*y^8 - 49252203*x^5*y^10 + 65065*x^3*y^12 - 15*x*y^14)/15! + (1*x^17 - 26520*x^15*y^2 + 86786700*x^13*y^4 - 40541436936*x^11*y^6 + 454101489270*x^9*y^8 - 63707972328*x^7*y^10 + 225645420*x^5*y^12 - 132600*x^3*y^14 + 17*x*y^16)/17! +(-1*x^19 + 43605*x^17*y^2 - 274362660*x^15*y^4 + 345219726852*x^13*y^6 - 38308692031038*x^11*y^8 - 46821734704602*x^9*y^10 + 641122349868*x^7*y^12 - 823087980*x^5*y^14 + 247095*x^3*y^16 - 19*x*y^18)/19! + ...
%e such that
%e . A(x,y) = 0 + Integral B(x,y)*C(y,x) - C(x,y)*B(y,x) dx,
%e . A(y,x) = 0 + Integral B(y,x)*C(x,y) - C(y,x)*B(x,y) dy,
%e where B(x,y) and C(x,y) satisfy
%e . A(x,y)^2 + B(x,y)^2 + C(x,y)^2 = 1.
%e TRIANGLE.
%e This triangle of coefficients T(n,k) of x^(2*n-2*k+1) * y^(2*k) / (2*n+1)! in A(x,y) begins
%e 1;
%e -1, -3;
%e 1, -30, 5;
%e -1, 315, 525, -7;
%e 1, -1260, 18270, -2940, 9;
%e -1, 3465, -496650, -695310, 10395, -11;
%e 1, -7722, 4279275, -52144092, 7702695, -28314, 13;
%e -1, 15015, -22387365, 2701093395, 3472834365, -49252203, 65065, -15;
%e 1, -26520, 86786700, -40541436936, 454101489270, -63707972328, 225645420, -132600, 17;
%e -1, 43605, -274362660, 345219726852, -38308692031038, -46821734704602, 641122349868, -823087980, 247095, -19;
%e 1, -67830, 747317025, -2065684781160, 887850774580770, -9453938937390948, 1282451118838890, -4426467388200, 2540877885, -429590, 21; ...
%e RELATED TRIANGLE.
%e A related triangle (A326800), formed from coefficients of x^(2*n-2*k+1) * y^(2*k) / ((2*n-2*k+1)!*(2*k)!) in e.g.f. A(x,y), begins
%e 1;
%e -1, -1;
%e 1, -3, 1;
%e -1, 15, 15, -1;
%e 1, -35, 145, -35, 1;
%e -1, 63, -1505, -1505, 63, -1;
%e 1, -99, 5985, -30387, 5985, -99, 1;
%e -1, 143, -16401, 539679, 539679, -16401, 143, -1;
%e 1, -195, 36465, -3275811, 18679617, -3275811, 36465, -195, 1; ...
%e RELATED FUNCTIONS.
%e B(x,y) = 1 + (-1*x^2)/2! + (1*x^4)/4! + (-1*x^6 + 120*x^4*y^2)/6! + (1*x^8 - 672*x^6*y^2)/8! + (-1*x^10 + 2160*x^8*y^2 - 120960*x^6*y^4)/10! + (1*x^12 - 5280*x^10*y^2 + 1584000*x^8*y^4)/12! + (-1*x^14 + 10920*x^12*y^2 - 10250240*x^10*y^4 + 482786304*x^8*y^6)/14! + (1*x^16 - 20160*x^14*y^2 + 45427200*x^12*y^4 - 11480268800*x^10*y^6)/16! + ...
%e such that
%e . B(x,y) = 1 + Integral C(x,y)*A(y,x) - A(x,y)*C(y,x) dx,
%e . B(y,x) = 0 + Integral C(y,x)*A(x,y) - A(y,x)*C(x,y) dy.
%e C(x,y) = (2*x*y)/2! + (-4*x*y^3)/4! + (-160*x^3*y^3 + 6*x*y^5)/6! + (1344*x^3*y^5 - 8*x*y^7)/8! + (145152*x^5*y^5 - 5760*x^3*y^7 + 10*x*y^9)/10! + (-2534400*x^5*y^7 + 17600*x^3*y^9 - 12*x*y^11)/12! + (-551755776*x^7*y^7 + 20500480*x^5*y^9 - 43680*x^3*y^11 + 14*x*y^13)/14! + (16400384000*x^7*y^9 - 109025280*x^5*y^11 + 94080*x^3*y^13 - 16*x*y^15)/16! + ...
%e such that
%e . C(x,y) = 0 + Integral A(x,y)*B(y,x) - B(x,y)*A(y,x) dx,
%e . C(y,x) = 1 + Integral A(y,x)*B(x,y) - B(y,x)*A(x,y) dy.
%e CC(x) = 1 - 2*x^2/2!^2 + 56*x^4/4!^2 - 8336*x^6/6!^2 + 3985792*x^8/8!^2 - 4679517952*x^10/10!^2 + 11427218287616*x^12/12!^2 - 51793067942397952*x^14/14!^2 + 400951893341645930496*x^16/16!^2 + ... + A326551(n)*x^(2*n)/(2*n)!^2 + ...
%e such that
%e . CC(x*y) = sqrt( (Bx*Cy - Cx*By)^2 + (Cx*Ay - Ax*Cy)^2 + (Ax*By - Bx*Ay)^2 ).
%e SS(x) = x - 8*x^3/3!^2 + 576*x^5/5!^2 - 160768*x^7/7!^2 + 123535360*x^9/9!^2 - 212713734144*x^11/11!^2 + 716196297048064*x^13/13!^2 - 4280584942657732608*x^15/15!^2 + 42250703121584165486592*x^17/17!^2 + ... + A326552(n)*x^(2*n+1)/(2*n+1)!^2 + ...
%e such that SS(x*y) = Ax*Ay + Bx*By + Cx*Cy.
%o (PARI) {TAx(n, k) = my(Ax=1, Bx=x, Cx=1, Ay=1, By=y, Cy=1);
%o for(i=0, 2*n+1,
%o Ax = 0 + intformal( Bx*Cy - Cx*By, x) + O(x^(2*n+2));
%o Bx = 1 + intformal( Cx*Ay - Ax*Cy, x) + O(x^(2*n+2));
%o Cx = 0 + intformal( Ax*By - Bx*Ay, x) + O(x^(2*n+2));
%o Ay = 0 + intformal( By*Cx - Cy*Bx, y) + O(y^(2*n+2));
%o By = 0 + intformal( Cy*Ax - Ay*Cx, y) + O(y^(2*n+2));
%o Cy = 1 + intformal( Ay*Bx - By*Ax, y) + O(y^(2*n+2));
%o );
%o (2*n+1)! * polcoeff( polcoeff(Ax, 2*n-2*k+1, x), 2*k, y)}
%o for(n=0, 10, for(k=0, n, print1( TAx(n, k), ", ")); print(""))
%Y Cf. A326798 (B), A326799 (C), A326800.
%Y Cf. A326794 (row sums), A326551 (CC), A326552 (SS).
%K sign,tabl,look
%O 0,3
%A _Paul D. Hanna_, Aug 03 2019