Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jul 24 2019 18:09:19
%S 1,1,2,6,24,144,864,6048,48384,475776,4902912,53932032,647184384,
%T 8892398592,126430875648,1906924529664,30510792474624,539606261956608,
%U 9890452422918144,188459240926150656,3773077461736095744,81667528704634650624,1819516013302975561728
%N E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-3)/(4*k-3)).
%H Vaclav Kotesovec, <a href="/A326780/b326780.txt">Table of n, a(n) for n = 0..447</a>
%H D. H. Lehmer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa21/aa21123.pdf">On reciprocally weighted partitions</a>, Acta Arithmetica XXI (1972), 379-388 (Theorem 7).
%F a(n) ~ 2^(7/2) * exp(-gamma/4) * n^(1/4) * n! / Gamma(1/4)^2, where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function [Lehmer, 1972].
%t nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!
%Y Cf. A007841, A294506, A309319, A326755, A326756, A326779.
%K nonn
%O 0,3
%A _Vaclav Kotesovec_, Jul 24 2019