login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

BII-numbers of clutters (connected antichains of nonempty sets).
22

%I #13 Jul 15 2024 15:36:30

%S 0,1,2,4,8,16,20,32,36,48,52,64,128,256,260,272,276,292,304,308,320,

%T 512,516,532,544,548,560,564,576,768,772,784,788,800,804,816,820,832,

%U 1024,1040,1056,1072,1088,2048,2064,2068,2080,2084,2096,2100,2112,2304

%N BII-numbers of clutters (connected antichains of nonempty sets).

%C A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.

%C Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge.

%H John Tyler Rascoe, <a href="/A326750/b326750.txt">Table of n, a(n) for n = 1..6834</a>

%H John Tyler Rascoe, <a href="/A326750/a326750.py.txt">Python program</a>.

%F Intersection of A326749 and A326704.

%e The sequence of all clutters together with their BII-numbers begins:

%e 0: {}

%e 1: {{1}}

%e 2: {{2}}

%e 4: {{1,2}}

%e 8: {{3}}

%e 16: {{1,3}}

%e 20: {{1,2},{1,3}}

%e 32: {{2,3}}

%e 36: {{1,2},{2,3}}

%e 48: {{1,3},{2,3}}

%e 52: {{1,2},{1,3},{2,3}}

%e 64: {{1,2,3}}

%e 128: {{4}}

%e 256: {{1,4}}

%e 260: {{1,2},{1,4}}

%e 272: {{1,3},{1,4}}

%e 276: {{1,2},{1,3},{1,4}}

%e 292: {{1,2},{2,3},{1,4}}

%e 304: {{1,3},{2,3},{1,4}}

%e 308: {{1,2},{1,3},{2,3},{1,4}}

%e 320: {{1,2,3},{1,4}}

%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];

%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];

%t stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];

%t Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&]

%o (Python) # see linked program

%Y The number of clutters spanning n vertices is A048143(n).

%Y Cf. A000120, A001187, A048793, A070939, A072639, A304986, A326031, A326702, A326753.

%Y Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

%K nonn,base

%O 1,3

%A _Gus Wiseman_, Jul 23 2019