login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n self-avoiding walks on the kisrhombille tiling starting at a degree 12 vertex.
4

%I #12 Oct 18 2024 11:43:13

%S 1,12,48,288,1344,6828,32892,159612,766356,3671076,17521560,83440932,

%T 396541656,1881162084,8909612856,42136382208,199020641232,

%U 938971412124,4425660916764

%N Number of length n self-avoiding walks on the kisrhombille tiling starting at a degree 12 vertex.

%C The kisrhombille tiling, Dual(4.6.12), is the dual of the truncated trihexagonal tiling.

%H Sven Erick Alm, <a href="https://doi.org/10.1088/0305-4470/38/10/001">Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices</a>, J. Phys. A.: Math. Gen., 38 (2005), 2055-2080. Also <a href="https://citeseerx.ist.psu.edu/document?doi=17863725272f56f85b6ace259e9b8724f7db96b3">technical report</a> of the same name, 2004. See Table 12, column f_1(n).

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a326/A326743.java">Java program</a> (github)

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_trihexagonal_tiling#Kisrhombille_tiling">Kisrhombille tiling</a>

%Y Cf. A326744 (degree 6 vertex), A326745 (degree 4 vertex), A249795 (dual), A298036 (coordination sequence).

%K nonn,walk,more

%O 0,2

%A _Sean A. Irvine_, Jul 23 2019

%E a(18) from Alm (2005) added by _Andrey Zabolotskiy_, Oct 18 2024