login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Values of n for which the denominator of (Sum_{prime p | n} 1/p - 1/n) is 1.
12

%I #16 Dec 15 2020 18:32:27

%S 1,2,3,5,7,11,13,17,19,23,29,30,31,37,41,43,47,53,59,61,67,71,73,79,

%T 83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,

%U 179,181,191,193,197,199,211,223,227,229,233,239,241

%N Values of n for which the denominator of (Sum_{prime p | n} 1/p - 1/n) is 1.

%C n is in the sequence iff either n = 1 or n is a prime or n is a Giuga number, by one definition of Giuga numbers A007850.

%H Robert Israel, <a href="/A326715/b326715.txt">Table of n, a(n) for n = 1..10000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Giuga_number">Giuga number</a>

%F n such that A326690(n) = 1.

%e a(30) = denominator(Sum_{prime p | 30} 1/p - 1/30) = denominator(1/2 + 1/3 + 1/5 - 1/30) = denominator(1/1) = 1, and 30 is a Giuga number.

%p filter:= proc(n) local p;

%p denom(add(1/p, p = numtheory:-factorset(n))-1/n)=1

%p end proc:

%p select(filter, [$1..300]); # _Robert Israel_, Dec 15 2020

%t PrimeFactors[n_] := Select[Divisors[n], PrimeQ];

%t f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];

%t Select[Range[148], f[#] == 1 &]

%Y Cf. A007850, A326689, A326690, A326691, A326692.

%K nonn

%O 1,2

%A _Jonathan Sondow_, Jul 20 2019