login
A326683
Sum of the sixth largest parts in the partitions of n into 10 primes.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 4, 4, 6, 9, 9, 12, 16, 20, 21, 27, 26, 36, 38, 47, 49, 68, 62, 86, 88, 111, 107, 145, 133, 183, 173, 220, 206, 287, 247, 341, 311, 411, 372, 509, 438, 610, 527, 713, 624, 865, 716, 1009
OFFSET
0,21
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * m, where c = A010051.
a(n) = A326678(n) - A326679(n) - A326680(n) - A326681(n) - A326682(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).
MATHEMATICA
Table[Total[Select[IntegerPartitions[n, {10}], AllTrue[#, PrimeQ]&][[All, 6]]], {n, 0, 70}] (* Harvey P. Dale, Aug 12 2021 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 17 2019
STATUS
approved