Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 03 2019 21:14:41
%S 1,3,5,6,7,9,12,13,17,18,19,20,21,22,23,24,25,28,29,33,48,49,65,66,67,
%T 68,69,70,71,72,73,76,77,80,81,82,83,84,85,86,87,88,89,92,93,96,97,
%U 112,113,129,132,133,144,145,148,149,192,193,196,197,208,209,212
%N The positions of 1's in the reversed binary expansion of n are pairwise coprime, where a singleton is not coprime unless it is {1}.
%H Robert Israel, <a href="/A326675/b326675.txt">Table of n, a(n) for n = 1..10000</a>
%e 41 has reversed binary expansion (1,0,0,1,0,1) with positions of 1's being {1,4,6}, which are not pairwise coprime, so 41 is not in the sequence.
%p extend:= proc(L) local C,c;
%p C:= select(t -> andmap(s -> igcd(s,t)=1, L), [$1..L[-1]-1]);
%p L, seq(procname([op(L),c]),c=C)
%p end proc:
%p g:= proc(L) local i;
%p add(2^(i-1),i=L)
%p end proc:
%p map(g, [[1],seq(extend([k])[2..-1], k=2..10)]); # _Robert Israel_, Jul 19 2019
%t Select[Range[100],CoprimeQ@@Join@@Position[Reverse[IntegerDigits[#,2]],1]&]
%o (PARI) is(n) = my (p=1); while (n, my (o=1+valuation(n,2)); if (gcd(p,o)>1, return (0), n-=2^(o-1); p*=o)); return (1) \\ _Rémy Sigrist_, Jul 19 2019
%Y Equals the complement of A131577 in A087087.
%Y Numbers whose prime indices are pairwise coprime are A302696.
%Y Taking relatively prime instead of pairwise coprime gives A291166.
%Y Cf. A000120, A051293, A070939, A289509, A291165, A319826, A326669, A326673, A326674.
%K nonn,base,look
%O 1,2
%A _Gus Wiseman_, Jul 17 2019