Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Jun 19 2021 08:34:49
%S 1,2,7,3,4,17,5,6,25,8,9,34,10,11,43,12,13,53,14,15,61,16,18,71,19,20,
%T 79,21,22,89,23,24,97,26,27,106,28,29,115,30,31,125,32,33,133,35,36,
%U 142,37,38,151,39,40,161,41,42,169,44,45,178,46,47,187,48
%N Rectangular array in 3 columns that solve the complementary equation c(n) = a(2n) + b(2n), where a(1) = 1; see Comments.
%C Let A = (a(n)), B = (b(n)), and C = (c(n)). A unique solution (A,B,C) exists for the following conditions: (1) A,B,C must partition the positive integers, and (2) A and B are defined by mex (minimal excludant, as in A067017); that is, a(n) is the least "new" positive integer, and likewise for b(n).
%e c(1) = a(2) + b(2) >= 3 + 4, so that b(1) = mex{1} = 2; a(2) = mex{1,2} = 3; b(2) = mex{1,2,3} = 4; a(3)= mex{1,2,3,4} = 5, a(4) = mex{1,2,3,4,5} = 6, c(1) = 7.
%e n a(n) b(n) c(n)
%e -----------------------------------
%e 1 1 2 7
%e 2 3 4 17
%e 3 5 6 25
%e 4 8 9 34
%e 5 10 11 43
%e 6 12 13 53
%e 7 14 15 61
%e 8 16 18 71
%e 9 19 20 79
%e 10 21 22 89
%t mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
%t a = b = c = {}; h = 2; k = 2;
%t Do[Do[AppendTo[a,
%t mex[Flatten[{a, b, c}], Max[Last[a /. {} -> {0}], 1]]];
%t AppendTo[b, mex[Flatten[{a, b, c}], Max[Last[b /. {} -> {0}], 1]]], {k}];
%t AppendTo[c, a[[h Length[a]/k]] + Last[b]], {150}];
%t {a, b, c} // ColumnForm
%t a = Take[a, Length[c]]; b = Take[b, Length[c]];
%t Flatten[Transpose[{a, b, c}]](* _Peter J. C. Moses_, Jul 04 2019 *)
%Y Cf. A309157, A326661.
%K nonn,tabl,easy
%O 1,2
%A _Clark Kimberling_, Jul 16 2019
%E Replaced a(0)->a(1) in NAME. - _R. J. Mathar_, Jun 19 2021