%I #6 Jul 18 2019 06:18:18
%S 0,1,1,2,1,1,1,2,2,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,1,1,
%T 1,3,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1
%N Number of factorizations of n into factors > 1 with integer average and integer geometric mean.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e The a(216) = 5 factorizations:
%e (2*4*27)
%e (3*3*24)
%e (3*6*12)
%e (6*6*6)
%e (216)
%e The a(729) = 8 factorizations:
%e (3*3*3*3*3*3)
%e (3*3*81)
%e (3*9*27)
%e (3*243)
%e (9*9*9)
%e (9*81)
%e (27*27)
%e (729)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t Table[Length[Select[facs[n],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,2,100}]
%Y Positions of terms > 1 are the perfect powers A001597.
%Y Factorizations with integer average are A326622.
%Y Factorizations with integer geometric mean are A326028.
%Y Partitions with integer average and geometric mean are A326641.
%Y Cf. A001055, A067538, A067539, A322794, A326514, A326515, A326516, A326623, A326643, A326645.
%K nonn
%O 1,4
%A _Gus Wiseman_, Jul 16 2019