login
For any k, the cumulative sum a(1) + a(2) + a(3) + ... + a(k) shares at least five digits with a(k). Lexicographically first sequence of positive integers without duplicate terms having this property.
4

%I #11 Dec 06 2019 21:45:38

%S 10000,100000,10001,10003,10004,10035,10061,10127,10184,10095,10200,

%T 10320,23040,12640,13600,10720,12380,12600,13000,10390,23400,15300,

%U 13700,19300,10400,14600,14000,40700,30500,15600,14500,15700,25700,30600,10600,68000,20000,17000,67000,48000,28000,95000,70000,10002,10007

%N For any k, the cumulative sum a(1) + a(2) + a(3) + ... + a(k) shares at least five digits with a(k). Lexicographically first sequence of positive integers without duplicate terms having this property.

%H Jean-Marc Falcoz, <a href="/A326640/b326640.txt">Table of n, a(n) for n = 1..5001</a>

%e Here are the first terms of the sequence:

%e 10000,100000,10001,10003,10004,10035,10061,10127,...

%e and here are the cumulative sums:

%e 10000,110000,120001,130004,140008,150043,160104,170231,...

%e If we align a(n) and its cumulative sum, we see that at least five digits are shared:

%e 10000,100000, 10001, 10003, 10004, 10035, 10061, 10127,...

%e 10000,110000,120001,130004,140008,150043,160104,170231,...

%Y Cf. A309151 (no digit is shared by the cumulative sum instead of five here), A316914 (one digit is shared), A316915 (two digits shared), A326638 (three digits shared), A326639 (four digits shared).

%K base,nonn

%O 1,1

%A _Eric Angelini_ and _Jean-Marc Falcoz_, Jul 15 2019