Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jul 14 2019 21:10:12
%S 0,0,0,0,0,0,0,0,0,0,1,1,2,2,4,5,9,11,16,21,31,37,51,61,83,99,129,150,
%T 197,229,288,332,417,479,589,676,830,950,1150,1310,1588,1802,2148,
%U 2431,2897,3264,3843,4322,5067,5684,6604,7380,8557,9538,10961,12198
%N Sum of the sixth largest parts of the partitions of n into 10 squarefree parts.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * m, where mu is the Möbius function (A008683).
%F a(n) = A326627(n) - A326628(n) - A326629(n) - A326630(n) - A326631(n) - A326633(n) - A326634(n) - A326635(n) - A326636(n) - A326637(n).
%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[m * MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
%Y Cf. A008683, A326626, A326627, A326628, A326629, A326630, A326631, A326633, A326634, A326635, A326636, A326637.
%K nonn
%O 0,13
%A _Wesley Ivan Hurt_, Jul 14 2019