login
A326628
Sum of the smallest parts of the partitions of n into 10 squarefree parts.
11
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 13, 16, 24, 27, 36, 43, 57, 66, 84, 96, 124, 142, 176, 199, 248, 280, 338, 382, 461, 519, 615, 688, 819, 914, 1066, 1186, 1392, 1539, 1780, 1970, 2278, 2512, 2879, 3167, 3629, 3986, 4517, 4960, 5631, 6159
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * r, where mu is the Möbius function (A008683).
a(n) = A326627(n) - A326629(n) - A326630(n) - A326631(n) - A326632(n) - A326633(n) - A326634(n) - A326635(n) - A326636(n) - A326637(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[r * MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
Table[Total[Select[IntegerPartitions[n, {10}], AllTrue[#, SquareFreeQ]&][[;; , -1]]], {n, 0, 60}] (* Harvey P. Dale, Sep 16 2024 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 14 2019
STATUS
approved