login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the eighth largest parts of the partitions of n into 9 primes.
9

%I #9 May 07 2022 20:59:11

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,4,4,6,8,8,11,15,15,19,22,

%T 24,26,34,36,44,47,53,59,73,71,87,93,109,109,138,128,163,157,190,190,

%U 238,210,277,262,325,300,387,344,457,399,515,464,617,515

%N Sum of the eighth largest parts of the partitions of n into 9 primes.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q) * p, where c = A010051.

%F a(n) = A326540(n) - A326541(n) - A326543(n) - A326544(n) - A326545(n) - A326546(n) - A326547(n) - A326548(n) - A326549(n).

%t Table[Total[Select[IntegerPartitions[n,{9}],AllTrue[#,PrimeQ]&][[All,8]]],{n,0,70}] (* _Harvey P. Dale_, May 03 2022 *)

%Y Cf. A010051, A259200, A326540, A326541, A326543, A326544, A326545, A326546, A326547, A326548, A326549.

%K nonn

%O 0,19

%A _Wesley Ivan Hurt_, Jul 13 2019