login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (binary) max-heaps on n elements from the set {0,1} containing exactly four 0's.
2

%I #8 Jul 11 2019 03:51:10

%S 1,1,2,5,7,11,17,27,34,50,65,94,110,154,182,250,279,375,420,555,601,

%T 781,847,1085,1152,1456,1547,1932,2024,2500,2620,3204,3325,4029,4182,

%U 5025,5179,6175,6365,7535,7726,9086,9317,10890,11122,12926,13202,15262,15539

%N Number of (binary) max-heaps on n elements from the set {0,1} containing exactly four 0's.

%H Alois P. Heinz, <a href="/A326505/b326505.txt">Table of n, a(n) for n = 4..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Heap.html">Heap</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_heap">Binary heap</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,1,-1,-4,4,1,-1,2,-2,-1,1).

%F G.f.: -x^4*(2*x^3-x^2+1)*(2*x^6-x^5-x^4+x^3+1)/((x^2+1)^2*(x+1)^4*(x-1)^5).

%Y Column k=4 of A309049.

%K nonn,easy

%O 4,3

%A _Alois P. Heinz_, Jul 09 2019