login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of maximal sum-free and product-free subsets of {1..n}.
9

%I #20 Oct 28 2020 04:06:43

%S 1,1,1,1,2,3,4,6,8,9,15,21,26,38,51,69,89,119,149,197,261,356,447,601,

%T 781,1003,1293,1714,2228,2931,3697,4843,6258,8187,10273,13445,16894,

%U 21953,27469,35842,45410,58948,73939,95199,120593,154510,192995,247966,312642

%N Number of maximal sum-free and product-free subsets of {1..n}.

%C A set is sum-free and product-free if it contains no sum or product of two (not necessarily distinct) elements.

%H Fausto A. C. Cariboni, <a href="/A326497/b326497.txt">Table of n, a(n) for n = 0..68</a>

%H Andrew Howroyd, <a href="/A326497/a326497.txt">PARI Program</a>

%e The a(2) = 1 through a(10) = 15 subsets (A = 10):

%e {2} {23} {23} {23} {23} {237} {256} {267} {23A}

%e {34} {25} {256} {256} {258} {345} {345}

%e {345} {345} {267} {267} {357} {34A}

%e {456} {345} {345} {2378} {357}

%e {357} {357} {2569} {38A}

%e {4567} {2378} {2589} {2378}

%e {4567} {4567} {2569}

%e {5678} {4679} {2589}

%e {56789} {267A}

%e {269A}

%e {4567}

%e {4679}

%e {479A}

%e {56789}

%e {6789A}

%t fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];

%t Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Tuples[#,2],Times@@@Tuples[#,2]]]=={}&]]],{n,0,10}]

%o (PARI) \\ See link for program file.

%o for(n=0, 37, print1(A326497(n), ", ")) \\ _Andrew Howroyd_, Aug 30 2019

%Y Sum-free and product-free subsets are A326495.

%Y Sum-free subsets are A007865.

%Y Maximal sum-free subsets are A121269.

%Y Product-free subsets are A326489.

%Y Maximal product-free subsets are A326496.

%Y Subsets with sums (and products) are A326083.

%Y Cf. A051026, A103580, A325710, A326076, A326117, A326491, A326492, A326498.

%K nonn

%O 0,5

%A _Gus Wiseman_, Jul 09 2019

%E a(21)-a(40) from _Andrew Howroyd_, Aug 30 2019

%E a(41)-a(48) from _Jinyuan Wang_, Oct 11 2020