login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of product-free subsets of {1..n}.
12

%I #40 Jun 27 2022 23:34:34

%S 1,1,2,4,6,12,22,44,88,136,252,504,896,1792,3392,6352,9720,19440,

%T 35664,71328,129952,247232,477664,955328,1700416,2657280,5184000,

%U 10368000,19407360,38814720,68868352,137736704,260693504,505830400,999641600,1882820608,2807196672

%N Number of product-free subsets of {1..n}.

%C A set is product-free if it contains no product of two (not necessarily distinct) elements.

%H Fausto A. C. Cariboni, <a href="/A326489/b326489.txt">Table of n, a(n) for n = 0..167</a>, (terms up to a(100) from Andrew Howroyd)

%H Marcel K. Goh and Jonah Saks, <a href="https://arxiv.org/abs/2206.12535">Alternating-sum statistics for certain sets of integers</a>, arXiv:2206.12535 [math.CO], 2022.

%H Andrew Howroyd, <a href="/A326489/a326489.txt">PARI Program</a>

%e The a(0) = 1 through a(6) = 22 subsets:

%e {} {} {} {} {} {} {}

%e {2} {2} {2} {2} {2}

%e {3} {3} {3} {3}

%e {2,3} {4} {4} {4}

%e {2,3} {5} {5}

%e {3,4} {2,3} {6}

%e {2,5} {2,3}

%e {3,4} {2,5}

%e {3,5} {2,6}

%e {4,5} {3,4}

%e {2,3,5} {3,5}

%e {3,4,5} {3,6}

%e {4,5}

%e {4,6}

%e {5,6}

%e {2,3,5}

%e {2,5,6}

%e {3,4,5}

%e {3,4,6}

%e {3,5,6}

%e {4,5,6}

%e {3,4,5,6}

%t Table[Length[Select[Subsets[Range[n]],Intersection[#,Times@@@Tuples[#,2]]=={}&]],{n,10}]

%Y Product-closed subsets are A326076.

%Y Subsets containing no products are A326114.

%Y Subsets containing no products of distinct elements are A326117.

%Y Subsets containing no quotients are A327591.

%Y Maximal product-free subsets are A326496.

%Y Cf. A007865, A051026, A326023, A326081, A326116, A326495.

%K nonn

%O 0,3

%A _Gus Wiseman_, Jul 09 2019

%E a(21)-a(36) from _Andrew Howroyd_, Aug 25 2019

%E a(0)=1 prepended to data, example and b-file by _Peter Kagey_, Sep 18 2019