The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326472 Sum of the second largest parts of the partitions of n into 9 parts. 9

%I

%S 0,0,0,0,0,0,0,0,0,1,1,3,5,10,15,27,39,63,91,135,188,272,368,510,682,

%T 918,1201,1586,2039,2639,3354,4264,5346,6716,8319,10312,12657,15516,

%U 18858,22908,27599,33226,39740,47449,56338,66809,78792,92799,108810,127365

%N Sum of the second largest parts of the partitions of n into 9 parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} i.

%F a(n) = A326464(n) - A326465(n) - A326466(n) - A326467(n) - A326468(n) - A326469(n) - A326470(n) - A326471(n) - A326473(n).

%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[i, {i, j, Floor[(n - j - k - l - m - o - p - q)/2]}], {j, k, Floor[(n - k - l - m - o - p - q)/3]}], {k, l, Floor[(n - l - m - o - p - q)/4]}], {l, m, Floor[(n - m - o - p - q)/5]}], {m, o, Floor[(n - o - p - q)/6]}], {o, p, Floor[(n - p - q)/7]}], {p, q, Floor[(n - q)/8]}], {q, Floor[n/9]}], {n, 0, 50}]

%Y Cf. A026815, A326464, A326465, A326466, A326467, A326468, A326469, A326470, A326471, A326473.

%K nonn

%O 0,12

%A _Wesley Ivan Hurt_, Jul 10 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 08:35 EDT 2020. Contains 334585 sequences. (Running on oeis4.)