Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Nov 18 2021 14:50:01
%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,4,4,6,8,8,11,12,15,16,22,18,26,
%T 28,36,32,47,38,59,52,71,60,93,68,109,86,128,96,157,112,190,132,210,
%U 154,262,168,300,198,344,224,399,246,464,286,515,324,605
%N Sum of the smallest parts of the partitions of n into 8 primes.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p) * p, where c = A010051.
%F a(n) = A326455(n) - A326457(n) - A326458(n) - A326459(n) - A326460(n) - A326461(n) - A326462(n) - A326463(n).
%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[p * (PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[o] - PrimePi[o - 1]) (PrimePi[p] - PrimePi[p - 1]) (PrimePi[n - i - j - k - l - m - o - p] - PrimePi[n - i - j - k - l - m - o - p - 1]), {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]
%Y Cf. A010051, A259198, A326455, A326457, A326458, A326459, A326460, A326461, A326462, A326463.
%K nonn
%O 0,17
%A _Wesley Ivan Hurt_, Jul 06 2019