login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the smallest parts of the partitions of n into 8 squarefree parts.
9

%I #11 Jul 21 2024 10:49:39

%S 0,0,0,0,0,0,0,0,1,1,2,2,4,5,8,9,14,16,22,26,35,40,52,59,78,86,108,

%T 122,153,169,207,231,280,310,371,409,487,535,630,688,812,883,1028,

%U 1119,1295,1409,1619,1754,2014,2180,2479,2679,3046,3284,3707,3994,4502

%N Sum of the smallest parts of the partitions of n into 8 squarefree parts.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p)^2 * p, where mu is the Möbius function (A008683).

%F a(n) = A326444(n) - A326446(n) - A326447(n) - A326448(n) - A326449(n) - A326450(n) - A326451(n) - A326452(n).

%t Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[p * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p]^2, {i, j, Floor[(n - j - k - l - m - o - p)/2]}], {j, k, Floor[(n - k - l - m - o - p)/3]}], {k, l, Floor[(n - l - m - o - p)/4]}], {l, m, Floor[(n - m - o - p)/5]}], {m, o, Floor[(n - o - p)/6]}], {o, p, Floor[(n - p)/7]}], {p, Floor[n/8]}], {n, 0, 50}]

%t Table[Total[Select[IntegerPartitions[n,{8}],AllTrue[#,SquareFreeQ]&][[;;,-1]]],{n,0,60}] (* _Harvey P. Dale_, Jul 21 2024 *)

%Y Cf. A008683, A326443, A326444, A326446, A326447, A326448, A326449, A326450, A326451, A326452.

%K nonn

%O 0,11

%A _Wesley Ivan Hurt_, Jul 06 2019