Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Jun 12 2020 04:23:25
%S 157,991,1217,7057,7523,7649,7841,9293,9661,9833,9923,10009,10079,
%T 10457,10487,11447,11927,12301,12547,12763,13469,13513,13693,14177,
%U 15511,15683,30557,31033,31069,31267,31277,32299,32341,32911,33029,35363,35801,72559,73453
%N Emirp-indexed emirps: emirps with emirp subscripts.
%C Here the 'subscript' of an emirp is the index of it over all the primes, not over the emirps (otherwise we would get {A006567(A006567(n))} sorted). - _Jianing Song_, Oct 29 2019
%H Metin Sariyar, <a href="/A326442/b326442.txt">Table of n, a(n) for n = 1..10000</a>
%H Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?curio_id=29363">Prime curio for 157</a>
%e 157 is a term because 157, 751, pi(157) = 37 and 73 are all primes.
%t Do[y=IntegerReverse;z=PrimeQ;k=PrimePi[n];a=y[n];b=y[k];If[!a==n&&!b==k&&z[a]&&z[b]&&z[n]&&z[k],Print[n]],{n,1,10^5}]
%o (PARI) is_emirps(n) = my(r=eval(concat(Vecrev(Str(n))))); isprime(r)&&r!=n&&isprime(n); \\ A006567
%o isok(n) = is_emirps(n) && is_emirps(primepi(n)); \\ _Michel Marcus_, Oct 14 2019
%Y Cf. A006450, A006567.
%K nonn,base
%O 1,1
%A _Metin Sariyar_, Oct 09 2019