login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.
4

%I #16 Mar 06 2020 04:04:51

%S 1,0,1,0,-1,1,0,5,-2,1,0,-61,16,-3,1,0,1385,-272,33,-4,1,0,-50521,

%T 7936,-723,56,-5,1,0,2702765,-353792,25953,-1504,85,-6,1,0,-199360981,

%U 22368256,-1376643,64256,-2705,120,-7,1,0,19391512145,-1903757312,101031873,-3963904,134185,-4416,161,-8,1

%N A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^(-n), for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Mittag-LefflerFunction.html">Mittag-Leffler Function</a>

%e Array starts:

%e [0] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007

%e [1] 1, -1, 5, -61, 1385, -50521, 2702765, -199360981, ... A028296

%e [2] 1, -2, 16, -272, 7936, -353792, 22368256, -1903757312, ... A000182

%e [3] 1, -3, 33, -723, 25953, -1376643, 101031873, -9795436563, ... A326328

%e [4] 1, -4, 56, -1504, 64256, -3963904, 332205056, -36246728704, ...

%e [5] 1, -5, 85, -2705, 134185, -9451805, 892060285, -108357876905, ...

%e [6] 1, -6, 120, -4416, 249600, -19781376, 2078100480, -278400270336, ...

%e A045944,

%e Seen as a triangle:

%e [0] [1]

%e [1] [0, 1]

%e [2] [0, -1, 1]

%e [3] [0, 5, -2, 1]

%e [4] [0, -61, 16, -3, 1]

%e [5] [0, 1385, -272, 33, -4, 1]

%e [6] [0, -50521, 7936, -723, 56, -5, 1]

%e [7] [0, 2702765, -353792, 25953, -1504, 85, -6, 1]

%t cl[m_, p_, len_] := CoefficientList[

%t Series[FunctionExpand[MittagLefflerE[m, z]^p], {z, 0, len}], z];

%t MLPower[m_, 0, len_] := Table[KroneckerDelta[0, n], {n, 0, len - 1}];

%t MLPower[m_, n_, len_] := cl[m, n, len - 1] (m Range[0, len - 1])!;

%t For[n = 0, n < 8, n++, Print[MLPower[2, -n, 8]]]

%o (Sage)

%o def MLPower(m, p, len):

%o if p == 0: return [p^k for k in (0..len-1)]

%o f = [i/m for i in (1..m-1)]

%o h = lambda x: hypergeometric([], f, (x/m)^m)

%o g = [v for v in taylor(h(x)^p, x, 0, (len-1)*m).list() if v != 0]

%o return [factorial(m*k)*v for (k, v) in enumerate(g)]

%o for p in (0..6): print(MLPower(2, -p, 9))

%Y Rows: A000007 (row 0), A028296 (row 1), A000182 (row 2), A326328(row 3).

%Y Columns: A045944 (col. 2).

%Y Cf. A326476 (m=2, p>=0), this sequence (m=2, p<=0), A326474 (m=3, p>=0), A326475 (m=3, p<=0).

%K sign,tabl

%O 0,8

%A _Peter Luschny_, Jul 07 2019